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ON THE TWO - ,PHASE MODAL FOR A PULSATILE FLOW
 
UNDER PERIODIC BODY ACCELERATION
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Physics and Math. Eng. Dep.• Faculty of Engineering, Port - Said, Egypt. 

A particle - fluid suspension model is applied to the problem of pulsatile blood flow 
through a circular tube under the influence of body acceleration. With the help of finite 
Hankel and Laplace transforms, analytic expressions for axial velocity for fluiQ and 
particle phase, fluid acceleration, wall shear stress and instantaneous flow rate have 
been obtained. It as observed that the solution can be used for all feasible values of 
pulsatile and body acceleration (as, riding a tractor, operating a jack hammer andsudden 
and fast movements of body during gymnastics and sports activities). Using physiological 
data, the following qualitative and quantitative results have been obtained. The maximum 
of the axial velocity and fluid acceleration shifts from the axis of the tube to the vicinity of 
the tube wall as the tube diameter increases. The effect of C on the velocity and 

acceleration are non-uniform. The effect of Con r b are again non- uniform. 
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INTRODUCTION: The theoretical and experimental' studies of blood flow phenomena in the 
vessels of the mammalian circulatory system has been the main object of scientific research 
for over hundred and fifty year. The study is a complex one due to the complicated stnucture 
of blood and circulatory system but the investigations have proved to by very useful for the 
development of pathological patterns in mammalian physiology, for the diagnosis of 
cardiovascular diseases and for other clinical purposes. In the numerous important 
contributions made to understand the behavior of blood when it flows through the vessels of 
the circulatory system study by (1952) and (1964), blood has been considered as a single 
phase homogeneous Newtonian viscous fluid. This approach does not account for the 
presence of red cells in blood. Experimental study by (1972) on blood flow indicate that blood 
can no longer be treated as a single phase homogeneous viscous fluid when the diameter of 
the blood vessel is smaller than 1000 f.J. It is surprising to note that the individuality of the 

red cells (of diameter 8 f.J) is important in even such large vessels (with diameter up to 100 
cells diameter). Skalak (1972) observed: that in capillary blood vessels whose diameter (4 ­
10 f.J) are equal or smaller than that of a red blood cell, an accurate description of the flow 
requires consideration of the red blood cells as discrete particles. Thus, in dealing with the 
problem of microcirculation also, the 'individuality of the red blood cells can't be ignored. 
Therefore, for realistic description of blood flow, it is perhaps more appropriate to treat blood 
as a two-phase fluid, that is, a suspension of red cells in plasma. It is with in view, we 
consider the two-phase model of blood flow in the present investigation. Several studies on 
blood flow assuming blood as a f1uid- particle system have been reported by (1979). 
Prolonged exposures to accelerative disturbances that are common in normal life (for 
instance, while landing and taking off of aircrafts, riding a tractor, operating a jack hammer 
and sudden and fast movements of body during gymnastics and sports activities) may lead 
to health problems like headache, abdominal pain, loss of vision and increased pulse rate 
even though human body can adapt to changes as (1974). It is possible that dangerous of 
body acceleration and pressure gradient of blood flow may be responsible for such health 
problems. It is, therefore, desirable to set a standard for short and long ter m exposures of 
human being to such acceleration. If the response of the human system to such 
accelerations is understood properly, the controlled accelerations can be used for therapeutic 
treatments, development of new diagnostic tools and for better desig ning of protective pads 
as (1973). 
Due to physiological importance of body acceleration, many mathematical models have been 
proposed for pulsatile flow blood with body acceleration by (1995) and (1986) by considering 
blood as a Newtonian, non- Newtonian, power law, caisson and micro polar fluid. 
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METHODS: Using two-phase model of blood, we shall investigate the pulsatile flow of blood 
with periodic body acceleration through a rigid circular tube of a radius R Since whole blood 
is a complex mixture, an attempt to analyze the system in an exact manner is very difficult. 
Therefore, we make a number of simplifications based on the properties of blood and the 
flow situation under consideration. The basic assumptions of this investigation are the 
following: 1. Blood is considered as a two-phase fluid, that is, suspension of red cells in 
plasma which is a Newtonian incompressible fluid. 2. The red cell is a rigid neutrally buoyant 
spherical particle, the specific gravity of the cell is about 1.1 and that of plasma is about 1.03 
such that the effect of gravity on blood flow is very small (i.e. setting tendency of erythrocytes 
is negligible). 3. Cell-cell interaction is neglected. 4. Interaction between two phases is 
according to Stokes drag law. 5. The volume fraction occupied by the red cells is taken as a 
constant. 6. Brownian motion of red cells is neglected. 7. The flow is axis-symmetric and the 
velocity components u I = uI (r, f), up = up (r, t), denote fluid and particle phase axial 

vel'ocities. 
The assumption 1 may be reasonable as far as the theological properties of blood are 
concerned. Blood cells are actually biconcave discoid shaped highly flexible particles. Thus, 
by assumption 2, one is limited in not being able to account for cell shape and the 
deformation it undergoes during shear flow. However, the cell deformability is not significant 
at low shear rates (as (1970)). The effect of cell- cell interaction (assumption 3) is felt 
important only at high concentration of cells and this makes our study limited to dilute 
suspension. The results using the constant concentration of red cells in a suspension 
(assumption 5) are exactly true in the limit of flow concentration. Since Brownian motion is 
significant only for very small particles such as protein molecules as (Lightfoot 1974), the 
assumption 6 seems reasonable. 
In view of the above assumption, appropriate equations (neglecting the body forces and body 
couples) describing the flow of plasma - cell system and governing the pulsatile blood flow 
through a rigid cylindrical tube with periodic body acceleration are given by (1979) and 
(1995), 

au 
P l(l-C)_1 = PI (1- C)ao cos ((Obf +~) + (1- C)af 

2 
(1 )au 1 au 

(Aa + AI cos COpf) + J.lI (----f- + I) + CFo(u p - uI)ar r ar
 

au
 
Pp --p = PpC ao COS (CObf + ~)+ C(A + AI COSCOpf)oaf (2) 

+CFo(u p -uI) 

where C is the volume fraction occupied by the red cells, PI and Pp are actual densities of 

fluid and particles (the fluid phase density PI (1 - C) and the particle phase density is Pp C), 

J.lI represents the mixture viscosity, (and in the case of blood, J.l I is the viscosity of plasma 

and thus is independent of red blood cells concentration C), the force exerted by spherical 
rigid particles (for a dilute suspension) of uniform size upon fluid is given by 
CFo(up-ul)=6ngnpJ.lI(up-ul)' npand gare the number density and radius of the 

particles and Fo = 9 J.l I / 2g2 
, the pressure gradient • aP / az and body acceleration g are 

given by 

_ap=Aa+AICOSCOpf, f20 (3) g=ao(coscobf+~), f~O (4)az 
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where {Up = 2n fp' f p is the pulse frequency, Ao and AI are pressure gradient of a steady 

flow and amplitude of oscillatory part, Qo is the amplitude of body acceleration, 

(Ob = 2 n fb' f b is body acceleration frequency, r/> is the phase angle of g with respect to 

heart action (pressure gradient) and t is the time. The initial and boundary conditions are 
«1985) and (1996)), 

. 0)_(R2-r2)(Ao+AI) (R 2 _r2+4f.1J IFo)(Ao+A,) 
IlJ (I, - , up(r,O)= , 

4 f.1J 4 f.1J 

11 J (r, 0) = 0, at r = R, uJ(r,t)and up(r,t) isfiniteatr=O (5) 

The solution of equations (1) and (2) and using the initial and boundary conditions (5) are 
obtained by the consecutive use of Laplace and Hankel transforms, defined as 

R 

J(~, ,s) =f
00 

e-"dt frJo(rO .r(r, t)d r (6) 
o 

where ~I are the roots of the equation J 0 (R ~, ) = 0, tilde and bar stand for the Hankel and 

Laplace transforms respectively. The inverse of the joint transform is given by 

f(r,t)=_l_ rl,j'<es/~fJ(~,s) JO(r~i) ds (7)
 
. 2ni Jy-I" R2 

1=1 JI2(R~,)
I 

where y ~ 0 and the summation is taken over all positive roots of J 0 (R ~i) = 0 , J 0 and J 1 

are Bessel functions of the first kind. The application of (6) on partial differential equations (1), 
(2) and the initial and boundary conditions (5) leads to a system of algebraic equations. The 
inversion of the solutions of these algebraic equations using (7) gives the properties of blood 
( the velocities uJ' up' the volume flow rate Q, the fluid acceleration F and wall shear stress 

T ).
ld 

RESULTS AND DISCUSSION : The flow investigations have been carried out by computing
 
the values of the flow variables at a particular site in cardiovascular system. The variation of
 
the axial velocity ur of the fluid phase, fluid phase acceleration F, wall shear stress T ID and
 

instantaneous flow rate Q with .rb ' Qo' tube radius R and volume fraction occupied by
 

particles C have been studied. It is observed that the variation in body acceleration amplitude
 
Q o brings in qualitative as well as quantitative changes in velocity profiles in wide tubes
 

whereas the changes of velocity profiles in narrow tubes are only quantitative in nature.
 
When pressure gradient and body acceleration are in phase, in small diameter tubes
 
(arteriole and coronary), body acceleration influences the velocity near the axis more than
 
near the wall and the maximum velocity is observed near the axis.
 
The effects of volume fraction occupied by the particles C on velocity in the case of arterioles
 
is that as C increases, the velocity increases, though the increase is very small.
 

Variation of fluid phase acceleration with tube radius and t has been shown for different
 
values of parameters. The body acceleration frequency .rh plays an important role in fluid
 

phase acceleration. It increases the amplitude of fluid phase acceleration as .rb increases. It 

is observed that the amplitude of fluid phase acceleration for flows with body acceleration is 
several times more than without body acceleration. As the tube diameter increases, 
maximum value of fluid phase acceleration shifts towards the wall. Also, body acceleration 
influences fluid phase acceleration in the vicinity of the wall in the case of a wider artery. The 
effect of C on fluid phase acceleration F in flow without body acceleration are qualitatively 
quite interesting, though they are small in magnitude. In the case when C = 0, the results 
agree with the Newtonian model as (1991). 
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Variation of wall shear stress T", with various parameters has been studied. The variation of 

wall shear amplitude Th due to body acceleration with tube diameter in cardiovascular system 

is interesting under prevailing physiological conditions (Table 1). 

Table 1 Variation of wall shear amplitude with .rh and C due to body acceleration. 

Coronary Femoral 
C = 0.0 0.6 

Arteriole 
0.0 0.6 0.0 0.6.rh 

1.2 0.380887 0.396427 5.820159 5.837594 5.557310 4.627643 
1.8 0.380886 0.396426 4.967295 4.912663 I14.346281 3.385057 

4.304852 4.228501 3.304852 2,7189192.4 0.380885 0.396424 

The effect of the frequency.rh of body acceleration on the instantaneous flow rate. It is 

observed that in the arteriole, the smaller the frequency of excitation, the greater is the peak 
flow rate, even though ao is kept constant. The amplitude of flow rate Qb due to body 

acceleration decreases as the tube diameter decreases (Table 2) and Qb decreases as .rb 

increases in all the tubes. 

Table 2 Variation of flow rate amplitude with .f~ and C. 

Arteriole 
Qb x 10-10 

Coronary 
Qh x 10-3 

Femoral 
Qb x 10-3 

.rb C = 0.0 0.6 0.0 0.6 0.0 0.6 

1.2 
1.8 
2.4 

0.414697 
0.414696 
0.414694 

0.431616 
0.431615 
0.431612 

0.407181 
0.337677 
0.282483 

0.404399 
0.327998 
0.270759 

8.342375 
5.764000 
4.414064 

7.613072' 
5.230962 
4.015571 

CONCLUSION: An analytical method for solving the pulsatile flow of blood with periodic 
body acceleration by considering blood as a two-phase fluid, that is, a suspension of cells in 
plasma which is a Newtonian fluid is presented. Fluid and particle phase velocities are 
determined and further steady pulsatile velocities with body acceleration for both cases are 
deduced. Expressions for fluid phase acceleration, wall shear stress and instantaneous flow 
rate have 'been obtained and using physiological data, the following observations have been 
made. Body acceleration effects in narrow and wide tubes are qualitatively different and they 
are more important in wide tubes quantitatively. Body acceleration frequency appears to be a 
strong parameter influencing the flow qualitatively and quantitatively and the variations in the 
flow variables are further influenced by (effect of C) the presence of the particles. ThUS, it 
may concluded from the observations made on the previous section that in cardiovascular 
system, the presence of red cells in blood influences and produces both qualitatively and 
quantitatively changes in ,the flow variables and hence its effects on blood flow are important 
in both narrow and wide tubes. 
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