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THE DETERMINATION OF BREAK POINTS IN TIME SERIES DATA
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The aim of this paper was to demonstrate three possible methods for the quantification of
breakpoints. Data were the elbow angle during the pull phase of 10 strokes of ergometer
rowing. First, a piecewise linear regression of two segments separated by a breakpoint was
applied iteratively whereby the minimum pooled squared error of both regressions was the
breakpoint. Second, the last local maxima, identified through zero-crossings of the first
derivative, was the breakpoint. Thirdly, the last time point at which the rate of change of the
joint angle data crossed a threshold was identified as the breakpoint. Each of these
methods was checked against visual determination of the breakpoints. The threshold
method was closer to the breakpoint as identified by visual inspection than were the linear
regression and local maxima methods, and appeared suitable for this application.
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INTRODUCTION: The collection of time series data is common in biomechanics. These data
are rarely rectilinear and often include changes along the y-axis. When these changes are
abrupt, these are often termed breakpoints (BPs) (Stasinopoulos & Rigby, 1992).

The use of visual inspection of kinematic data for determining key movement events has
previous been validated (Mickelborough et al., 2000), yet while it is easy to identify significant
fluctuations and BPs in the data visually, there is a need for quantitative methods so as to
circumvent possible subjectivity, and for the creation of algorithms to detect BPs in a given
time series for large data sets.

Time series data are usually analysed to detect local minima or maxima to be quantified as
change points. Other methods include the detection of points at which the sign of the curvature
changes. These points of inflexion however, are less commonly explored. In other areas
including physiology, techniques have been used for quantifying BPs in time series data
through regression modelling (Muggeo, 2003; Cannon, Kolhorst, & Buono, 2009). Such
techniques remain rarely applied in biomechanics, yet they could provide easy quantification
of the fluctuations in time series data. This could provide a useful tool for numerous
biomechanical applications, for example, in the detection of the onset of joint motion. The
purpose of this paper was to evaluate the effectiveness in detecting the initiation of a joint
angle change of three algorithms: (1) regression modelling; (2) detection of the local maxima
from the derivatives of the signal values; and (3) through changes in the gradient of the first
derivative of the signal values in relation to a threshold.

METHODS: Test data were obtained from 24 females (mean + SD: age, 19.1 + 1.6 years;
height, 1.69 £ 0.09 m; mass, 67.5 + 5.9 kg), who each provided informed consent. Participants
rowed continuously for 10 minutes on a Dynamic ergometer (Concept2, Morrisville, VT).
Kinematic data were obtained from five passive, spherical, retro-reflective markers, of 9.5mm
diameter affixed to anatomical landmarks of the shoulder, elbow, and wrist joints, and to the
lateral sides of the upper arm and forearm. A further seven markers were placed on the
ergometer, on the handle and the foot stretcher. The positive X-axis pointed along the length
of the ergometer, towards the feet of the subject, the Z-axis was vertically up and the Y-axis
was the cross-product of Z and X (pointing left).

Three-dimensional kinematics of the markers were recorded at a rate of 150Hz using 11
Motion Analysis Corporation (MAC) Raptor Digital Cameras (MAC, Santa Rosa, CA). All
marker identification was completed using Cortex v5.3.1 (MAC) and data analysed using
custom written MATLAB code (R2014b; MathWorks, Natick, MA). Data were smoothed using
a zero lag 4" order Butterworth low-pass filter with a cut-off frequency of 7Hz.

Ergometer and joint kinematics were analysed in three dimensions, and the elbow angle was
defined as the angle between the longitudinal axes of the upper arm and forearm (where 180°
was full extension). The turn-points of the rowing motion were defined as the instants at which
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the velocity of the centre of the ergometer handle in the X-axis changed from positive to
negative (catch), and from negative to positive (finish). Data from catch to subsequent finish
constituted one ‘pull’ phase. Over each pull, joint position and velocity data were normalised
as a function of time to 101 data points using cubic spline interpolation. The pull phases of the
first 10 rowing strokes of each participant were taken for analysis.

The BP of the initiation of elbow motion from greater extension to greater flexion was firstly
determined through visual inspection (VI) of the plotted joint position data by the researcher.
This method used as a comparison for the subsequent three algorithms, which were each
applied separately to the data. The first algorithm was a piecewise linear regression (LR), with
two segments, separated by a BP (Figure 1). Using an iterative approach, each joint angle
data point was in turn treated as a potential BP, and least-squared linear regressions were
fitted to the data on either side. One regression was calculated from the first data point forwards
to the BP, the second from the end data point back to the BP. The latter data were then
reversed along the time axis so that the regression ran from the BP to the end of the data. The
BP at which the pooled sum of the squared errors of both regressions was |least was taken as
representative of the time of the initiation of elbow flexion. For the second algorithm, termed
the local maxima (LM) method, joint angle data were differentiated with respect to time before
each positive to negative change in the sign of the first derivate was detected. Each of these
changes were categorised as a local maxima. The last maxima was termed the BP, and here
represented the time instant of the first uninterrupted move into flexion of the elbow. A third
algorithm, termed the threshold method (TH) was also applied to the data. First, the time point
at which the joint angle data crossed below a threshold of 100° was determined. Working from
this point backwards towards the start of the data, the gradient of the first derivative of each
joint angle data point was assessed against a second threshold. The first time instant at which
this gradient became less negative than -0.25°/%pull, indicated the start of joint flexion and
was taken as the BP of the joint angle data. Data were presented as means and standard
deviations, and values were compared using paired t-tests at an alpha level of 0.05 using
SPSS (v.22, IBM, Armonk, NY).

RESULTS: The mean estimated times of the elbow angle BPs (as a percentage of the pull
phase) across all strokes of all participants were 39 + 6%, 54 £ 7%, 27 + 4%, and 37 = 5% for
VI, the LR, LM, and TH methods, respectively. For each participant, the LR method consistently
estimated BPs of elbow flexion that were significantly later in time than the other methods (TH,
p <0.05; LM, p <0.05; VI, p < 0.05). The LR method appeared to estimate BPs that were later
than the actual onset of elbow flexion (Figure 1.b), identifying BPs that were during the
transition of the elbow moving into flexion, rather than at its initiation. The estimates derived
from the LM method were closer in time to the VI BPs, yet were significantly different (p <
0.05). The TH method however, appeared to determine BPs at the initiation of the change of
the joint angle (Figure 1.). The TH method showed no significant difference when compared
to VI (p < 0.05), and was therefore considered comparable. Figure 1 illustrates an example of
the three calculated BPs of the elbow angle, displaying the time intersection of the two
regressions and the points of the last local maxima and threshold crossing for the LR, LM, and
TH methods, respectively.
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Figure 1. a) Mean (n = 10 strokes) elbow angle data for 1 participant. LR1 and LR2 represent both
linear regressions fitted for the LR method; BP LR, BP LM, and BP TH, are the breakpoints as
determined by the linear regression, local maxima, and threshold methods, respectively. b) Area
of interest around the estimated BP LR and BP TH enlarged from Figure 1a).

DISCUSSION: A number of considerations became apparent when assessing the applicability
of these methods. The sensitivity of the LR method was affected by the rate of change from
extension to the onset of flexion. The slower the transition, the larger the radius of the curve in
the data and the further in time the estimated BP was from the initiation of the curve away from
the first regression (Figure 1). Furthermore, the gradient of the two regressions fitted to the
data were dependent upon the extremes of the elbow angle data; for example, a return into
extension of the elbow at the end of the pull altered the gradient of the second regression,
consequently altering the intersection of the two regressions and the estimated BP. Running
the LR method over a selected sample of the data set, around a prior estimation of the BP
location, would have alleviated this, yet the usability of the LR method would reduce if the data
being assessed displayed large variability in the predicted location of the BP and if, for each
trial, individual data samples had to be identified before the LR analysis. This could be further
complicated by the number of data points included in the calculation of each regression, so as
to reduce the effects of prior or subsequent data fluctuations affecting the gradients of the
regression equations.

If elbow extension was observed at the start of the pull phase and, after the initial move into
flexion, the elbow continued to move into flexion at an increasing rate, the LM method
appeared to identify the moment that the flexion began. However, if at the start of the pull
elbow flexion were observable as a reaction to overcoming the inertial force of accelerating
the ergometer handle, the likelihood of false positive identification of the BP would increase,
especially if the elbow did not return into extension before the true BP (e.g. Figure 1a). The
LM method is reliant on a change in the sign of the angular velocity to detect a BP, whereas
in some cases observed here, the BP is actually a marked change from slow to rapid in the
rate of flexion, rather than a move from extension to flexion. Such false positives, or even the
non-detection of a BP, would need to be reduced. To decrease these, an extension of the LM
method could comprise the inclusion of a threshold across which the data has to pass before
the last LM is taken (Cannon et al., 2009).

615



The TH method produced the closest BPs to VI, however, the determination of the limits of the
thresholds would need careful prior consideration. The thresholds chosen here were
determined through pilot inspection of the data and were aided by the predictability of the
movement being assessed. To provide a more quantitative approach to determining noise in
the data for the setting of the thresholds, the TH method would benefit from a more objective,
systematic method for estimating threshold values from a subset of the data prior to the
expected BP location.

Neither without limitations, nor without the need for adaptation based on the time series data
itself, the methods presented here demonstrate steps in quantifying the changes in times
series data. The TH method appears a simple and suitable algorithm for detection of the
initiation of joint motion of the type assessed here, where there are clear changes in
directionality of the time series data and only one BP is present. However, this method would
require refinement if it is to be applicable to data displaying greater temporal fluctuations.

CONCLUSION: This study describes the effectiveness of three methods for determining the
BPs of time series data. On application to this test data and the determination of the onset of
elbow flexion, the TH method was found to be effective for the detection of the BP of elbow
joint motion, displaying greater accuracy than both the LR and LM methods when compared
to VI. This study presents quantitative methods to assess changes in time series data and
future research should focus on the refinement of these techniques.
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