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Detrended fluctuation analysis (DFA) provides valuable information regarding 
both training and injury when applied to running time series. However, there is 
limited information when applied to recreational runners, or within a real-time 
environment. Firstly, DFA was applied to the stride time series of select training 
runs and competitive runs for recreational runners completing a half marathon 
and full marathon. Results indicate recreational runners maintain similar stride 
time dynamics in a half marathon, compared to training, however, stride time 
variability becomes increasingly deterministic during a marathon, compared to 
training. Secondly, we explore the implementation of DFA in a real-time system 
and provide evidence to support the use of DFA in running feedback. 
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INTRODUCTION: Detrended fluctuation analysis (DFA) has become popular in quantifying 
the temporal structure of fluctuations within biological time series, such as heartbeat (Peng 
et al., 1995) and walking stride time (Hausdorff et al., 1995). DFA ascertains that fluctuations 
do not happen randomly, but exhibit self-similarity and long range correlations which can 
reveal important information related to disease and ageing. Recently, DFA has been utilised 
within a sporting domain when applied to running stride time series, for example DFA has 
distinguished the training status of runners (Nakayama et al., 2010), and identified previously 
injured runners from their previously non-injured counterparts (Meardon et al., 2011). 
Progress has been made to investigate stride time variability within an ecological 
environment as Hoos et al. (2014) investigated long range correlations and pacing during a 
half marathon race. However, their runners were experienced distance runners and the 
study did not investigate stride time correlations. Of greater interest are recreational runners 
as they have been show to incur alterations to cadence and tibia1 acceleration during periods 
of prolonged running (Mizrahi et al., 2000). Also, recreational runners are affected by fatigue 
and reach functional limits in a race environment. to a much greater extent than experienced 
runners (Bertram & Prebeau-Menezes, 2013). Therefore, in the present study, firstly DFA 
was applied to recreational runners' stride time series for competitive and training distance 
runs, to investigate the presence of long range correlations during free-paced running. 
Secondly, whilst the information provided by DFA may be of signifiint importance to 
researchers and runners alike, analysis requires extended data collection. Studies 
investigating DFA on running populations have typically collected greater than 500 strides 
requiring increased post-processing capabilities, along with advanced statistical knowledge 
for correct implementation. This has led to DFA being underutilised within laboratory 
settings, and never utilised in consumer wearable running devices. Therefore, the second 
part of the current study discusses the implementation of a real-time DFA feedback system, 
with representative data supporting the practical application of DFA in the running domain. 

METHODS: For the first part of this study comparing DFA applied to training and competitive 
runs, four recreational runners training for and completing a half marathon (age: 32.5 * 6.1 
years, height: 1.68 k 0.09 m, mass: 68.4 & 14.0 kg, personal best 10 km time: 52.2 2 4.9 
min) and three recreational runners training for and completing a marathon were recruited 



(age: 39.7 k 3.1 years, height: 1.68 0.13 rn, mass: 67.0 k j8.4 kg, personal best 10 krn 
time: 50.7 2 4.2 min). Participants were classed as recreational runners as they had not 
received specialised running training and were undertaking their first halffiull marathon 
distance. Prior to half and full marathon completion runners undertook a self-led Hal Higdon 
running training programme, appropriate to their ability and end running goal. Runners were 
required to attach a tri-axial Shimmer 2r accelerometer (SHIMMER Ltd, Dublin, Ireland), to 
their anterio-medial distal tibia bi-laterally for each training run and the competitive distance 
event. Accelerometer placement was controlled via a demonstration and manual provided to 
participants prior to the beginning of data collection. When attached to the tibia a positive 
vertical acceleration was directed proximally, positive medio-lateral acceleration was 
directed laterally and positive anterio-posterior acceleration directed posteriorly. Data were 
sampled at 204.8 Hz (k6 g, sensitivity range of 200 mVlg). The runners' half or full marathon 
race data were analysed as competitive races, whilst their longest recorded training run was 
analysed as a non-competitive comparison (Table I).  Data processing was performed for 
right leg tibia1 accelerometry files using custom built MATLABm (Mathworks, Cambridge, 
UK) algorithms. Anterior-posterior accelerometry data were filtered at 2 Hz with a 2nd order 
Butteworth low-pass reverse filter and stride time identmed as the time between peaks. 
Stride time series were subsequently visually checked for outliers, which were manually 
removed. Each stride time series was divided into three, even time length; a section 
representing the beginning, middle and end of each run, and the "overall" run was regarded 
as the whole stride time series. Stride time long range correlations were calculated using 
DFA, quantified with the scaling exponent, outlined by Peng et al., 1995. In brief, an a value 
closer to 1 indicates increased dependency of a stride to a previous stride at any given time, 
an a value closer to 0.5 indicating decreased dependency of a stride to a previous stride at 
any given time and an a value of less than 0.5 indicates a loss of correlation among different 
time scales (Meardon et al., 2011). Friedman tests were used to identify statistical 
significance between run sections (beginning, middle and end) and Wilcoxon-Sign Rank 
tests was used to identify statistical significance between training and competitive run 
sections. An alpha value of 0.05 was used to identify statistical signmcance. Effect sizes 
(ES) for a values were calculated between matching run sections across training and 
competitive run, in both half and full marathon groups. Due to small sample size Hedge's G, 
a modified version of Cohen's D, was employed with ES interpreted as small ( 0 4 ,  medium 
(0.5) and large (0.8) (Hedges, 1981). For the second part of the current study an advanced 
running analysis system comprised of a Shimmer 2r accelerometer, a laptop equipped with 
Bluetooth capability, MATLAB (Mathworks, Cambridge, UK) and a PhysioNet C+ DFA 
programme. To provide representative data generated via the running analysis system a 
healthy active participant (female, age: 26.6 years, height: 1.80 m, mass: 70.1 kg) performed 
a treadmill running protocol whilst completing the advanced analysis system. The participant 
ran for an 18 minute period at their preferred running speed (PRS). which was then repeated 
at 80% of their PRS and 120% of their PRS. The participant was allowed as long as 
necessary to rest between runs to mitigate the effect of fatigue. Accelerometer attachment, 
data processing and stride time calculation was performed as outlined for study part one. 
However, accelerometry data were transmitted via Bluetooth in real-time, which allowed 
processing during each 18 minute run, at eleven user defined time points (Analysis numbers 
A1 - A1 I, Table 2) and at run cessation (A12, Table 2). DFA a values were then relayed on 
the laptop screen to the researcher. To verify the system met the specified requirement, real- 
time output of repeated DFA a values, the time difference in seconds (At) between the user 
time point selected and the related a value display time were calculated. To verify the 
system produced reliable a values over a range of running speeds a values were also 
recorded and compared to previous literature. 

RESULTS & DISCUSSION: The number of strides calculated for each run were. half 
marathon training and competitive runs = 9,091 k 1,771 and 9,854 k 1.189, and marathon 
training and competitive runs = 15,689 k 1,920 and 21,109 k 3,069. There was no significant 
difference between run sections both within runs (beginning, middle and end), or across 



training and competitive runs, in both half and full marathon groups. DFA a values ranged 
between 0.84 and 1.07 across all run sections and types (training\competitive, hamfull) 
(Table 1). Whilst our a values, calculated from participants in training and competitive runs, 
are higher than those previously found in treadmill running (0.70 - 0.90, Jordan et al., 2006), 
this may be due to increased visual cues and proprimptive feedback in outdoor running 
strengthening correlations. Trivial and small effect size differences were identiiied between 
the training and competiiive run in the half marathon group (beginning ES = 0.25. middle ES 
= 0.12, end ES = 0.06, overall ES = 0.40), whilst medium and large effect size differences 
were identified in the marathon group (beginning ES = 0.82, middle ES = 0.58, end = 0.58, 
overall = 0.51) (Table 1). It is possible that the large ES present within the half marathon 
group is due to the influence of a designated pacer or the selection of an incorrect pacing 
strategy causing a "biological stressof upon runners. Stress conditions placed on gait have 
previously been found to increase persistency and therefore strengthen stride time long 
range correlations in running (Jordan et al., 2006). Whilst it could be argued that pacers are 
also utilised in half marathon running the participants within the current study performed 
similar distance to the competitive half marathon within their training programme (19 km v 
21 .I km) and therefore would have had an accurate estimate of pacing when performing the 
competitive run, perhaps explaining trivial and small ES within the half marathon group. 

Table 1. Group training and competitive run variables and DFA a values. Average 
results are presented with range In parentheses. 

Half Marathon Marathon 
(n = 4) (n = 3) 

Training Run Competitive Run Training Run Competitive Run 

Run Time 
(minutes) 
Distance 
(km) 
Velocity 
(WS) 

a Beginning 0.95 (0.91 - 1.00) 0.93 (0.88 - 0.98)~ 0.92 (0.84 - 0.96) 0.98 (0.92 - 1.03)' 
a Middle 0.92(0.84-0.98) 0.91(0.85-0.99)a 0.89(0.89-0.90) 0.93(0.88-1.01)' 
a End 0.95(0.84-1.05) 0.94(0.85-1.04)a 0.95(0.91-1.00) 0.97(0.95-0.99)' 
a Overall 0.97(0.89-1.07) O.W(O.87-0.99)~ 0.94(0.89-1.01) 0.97(0.96-0.68)' 
'Effect size between training and competitive run, ' = trivial, " = small, = medium, * = large. 

DFA does not investigate discrete values which are susceptible to immediate adjustments. 
Therefore, longer periods of data collection prior to result output is suggested as more 
appropriate within this system when referring to 'real-time" DFA a value output. All DFA a 
values were displayed via the real-time analysis system within 0.83 - 2.19 seconds of user 
identified time points (average of 1.49 k 0.41 seconds 80% of PRS; average of 1.55 k 0.34 
seconds PRS; and average of 1.28 k 0.32 seconds 120% PRS) (Table 2). Post overall run 
DFA a value output occurred within 5 seconds, across all running speeds (average 3.61 k 
1.03 seconds). DFA a values from the real-time analysis system ranged 0.70 - 0.86, within 
the data analyses epochs (Al- A1 1), across all running velocities. Our results are similar to 
those found by Jordan et al. (2006), who identified a values of 0.70 - 0.90 whilst running at 
similar percentages of PRS. This may verify that our advanced running analysis system 
generates valid DFA a values over a range of running speeds. Interestingly, we also found 
that our participants' overall run a was lowest at 100% of PRS (0.80, compared to 0.85 at 
80% of PRS and 0.92 at 120% of PRS). This was previously identified by Jordan et al. 
(2006) and Is explained as a runner being most adaptable and therefore less predictable In 
their stride time, at their PRS. This further supports our system within a training and skill 
level identification setting, as the system is able to detect a value differences previously 
identified within the literature. 



Table 2. Difference in user deflned time point and a value output tlme (see) At, and 
DFA a values over three runnlng conditions at 80% PRS, PRS and 120% PRS. 

At A 
Analysis No. 80% PRS 120% 80°h PRS 120% 

PRS PRS PRS PRS 
A1 2.19 1.13 0.93 0.82 0.75 0.83 
A2 0.95 1.02 0.87 0.77 0.74 0.84 
A3 0.83 1.76 0.88 0.74 0.72 0.85 
A4 1.07 1.38 1 .I4 0.74 0.70 0.86 
A5 1.30 1.18 1.02 0.75 0.71 0.82 
A6 1.57 1 -44 1.41 0.78 0.74 0.84 
A7 1.51 1.76 1.49 0.79 0.73 0.80 
A8 1.57 1.77 1.46 0.73 0.79 0.80 
A9 1.75 1.69 1.59 0.77 0.81 0.83 
A1 0 1.70 1 -80 1.50 0.74 0.83 0.84 
A1 1 1.90 2.10 1.80 0.78 0.81 0.75 

Average 1.49 1.55 1.28 
( f stdev) ( * 0.41) (* 0.34) (* 0.32) 

N IA N IA NIA 

Overall Run 
A1 2 2.68 4.72 3.44 0.85 0.80 0.92 

CONCLUSION: 

DFA results here indicate that recreational runners maintain similar stride time dynamics 
when completing a half marathon distance compared to a long training run. However, 
possible biological stressors may impact stride variability within a marathon run. Also, the 
implemented running analysis system provides real-time output of advanced variability 
information, which previously required extensive data processing and analysis. This provides 
access to information important in both a training and injury prevention context, for coaches 
and researchers alike. As advances in Bluetooth technology occur further development of 
the system will allow advanced stride variability analysis in an ecologically valid environment. 
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