SIDE-TOSIDE ASYMMETRY OF LANDING KINETICS IN HEAVY AND LIGHT BASKETBALL PLAYERS DURING A DROP LANDING

Darren Zijie Nin, Wing Kai Lam, Pui Wah Kong

Abstract


This study examined (1) the effect of body mass on impact forces during drop landings in basketball players, and (2) side-to-side asymmetry in landing kinetics between legs. Thirty male basketball players were assigned into 'heavy" (n = 15, mass 82.7 i 4.3 kg) or "light" (n = 15, mass 63.1 * 2.8 kg) groups. Players performed five drop landings from a 0.42 m platform. Vertical ground reaction forces for both legs were sampled using two adjacent and embedded force plates. A mixed factorial analysis of variance (Body Mass x Side) was applied to normalised peak force and loading rate variables (a = -05). The left leg experienced higher forefoot peak force (1 5.946, p = .001), forefoot mean loading rate (10.9%, p = .007) and rearfoot mean loading rate (1 1.846, p = .014) than the right leg, suggesting that side-to-side asymmetry exists. No body mass effect was found.

Keywords


body mass; impact; ground reaction force; bilateral symmetry

Full Text:

PDF


ISSN 1999-4168