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Sample entropy can be an effective tool for the investigation of human movement 
variability. However, before applying the method, it can be beneficial to employ an 
analysis to confirm that observed data is not solely the result of stochastic processes. 
This can be achieved using surrogate methods. Previous investigations have used 
surrogate methods within human gait data, yet no appropriate method has been applied 
to discrete human movement. This article proposes a surrogate method for discrete 
movement data. The technique reliably generated surrogates for discrete joint angle time 
series, effectively destroying fine-scale dynamics of the observed signal and maintaining 
macro structural characteristics (e.g., Mean, SD). Comparison of entropy estimates 
indicated that observed signals contained deterministic dynamics.  
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INTRODUCTION: A tool which has been shown to be effective in investigating movement 
variability is sample entropy (Preatoni, Ferrario, Dona, Hamill, & Rodano, 2010).  Sample 
entropy allows quantification of the regularity of a signal allowing inference to the complexity 
of the organism or system producing the signal (Lake, Richman, Griffin, & Moorman, 2002; 
Preatoni et al., 2010; Richman & Moorman, 2000). However, as entropy quantifies the 
regularity of signals that are stochastic, deterministic or a combination of both, a method 
which can demonstrate that a biological signal is not solely stochastic in nature is beneficial. 
This outcome can be achieved by contrasting observed data with data generated from 
surrogate methods (Small, Nakamura, & Luo, 2007; Theiler, Eubank, Longtin, Galdrikian, & 
Doyne Farmer, 1992). Surrogate methods can produce time series which resemble 
observed data yet present properties consistent with a non-deterministic signal.  
Various surrogate techniques exist for different applications (Small et al., 2007). Due to its 
cyclical nature, human gait has previously been investigated using a pseudo periodic 
surrogate method (Miller, Stergiou, & Kurz, 2006; Preatoni et al., 2010). However, this 
method is inappropriate for discrete movements as the discontinuities that exist from one 
trial to the next prohibit time delay embedding. The purpose of this article is to propose a 
surrogate method which can be applied to discrete movement data and to determine its 
reliability. Sample entropy will then be used to test for deterministic dynamics within discrete 
human movement using the generated surrogates. 
 
METHODS: Sixty four shoulder (I/E rotation) and elbow (flex/ext) joint angular displacement 
time series were obtained from 10 informed, consenting, male participants [24.1 (3.3) years; 
176.6 (5.9) cm; 76.4 (7.8) kg] during the performance of an overarm throwing task across 
four sessions. Equipment and laboratory configuration were the same as reported previously 
(Taylor, Lee, Landeo, O’Meara, & Millett, 2015). 
A generalisation of the pseudo periodic surrogate method (Small, Yu, & Harrison, 2001) is 
proposed for discrete movement data. This method will result in outcomes similar to those 
achieved using a Small surrogate method (Nakamura & Small, 2005). The following outlines 
the proposed method: 
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1. Let xij and yij be the jth scalar time point from the ith trial of observed joint angle time series 
(e.g. where xij is elbow angular displacement and yij is the same for the shoulder). Let the 
concatenated time series X and Y be; 

𝑋 = (𝑥𝑖𝑖) 𝑖=1,…,𝑁
𝑖=1,…,𝑇𝑖

 

𝑌 = (𝑦𝑖𝑖) 𝑖=1,…,𝑁
𝑖=1,…,𝑇𝑖

 

where N is the total number of trials collected, Ti is the total number of data points in the ith 
trial and X and Y are matrices with dimensions ∑ 𝑇𝑖𝑁

𝑖=1 . 
2. Then the concatenated time series X and Y are combined to form a phase space, P, 
where P is a matrix with dimensions 2 ∗ ∑ 𝑇𝑖𝑁

𝑖=1 ; 
𝑃 = (𝑋𝑖𝑖 ,𝑌𝑖𝑖) 𝑖=1,…,𝑁

𝑖=1,…,𝑇𝑖
 

3. Initial (A) and final (B) conditions of individual trials within P are extracted where A and B 
are both 2 x N matrices; 

𝐴 = (𝑥𝑖1,𝑦𝑖1)𝑖=1,…,𝑁 
𝐵 = (𝑥𝑖𝑇𝑖 ,𝑦𝑖𝑇𝑖)𝑖=1,…,𝑁 

4. Elements of P are then shuffled (randomly resampled with replacement) to form the 
surrogate Ps. First an initial current state Ps(i,t) is selected at random from A. Set t = 1. 
5. To select the next state of Ps first noise is added to the current state creating C; 

𝐶 =  𝑃𝑠(𝑖,𝑡) + 𝜌𝜌𝑃𝑠(𝑖,𝑡) 
where ρ is a constant and g is Gaussian noise; 

𝜌 ~ 𝑁(0,1) 
6. The state in P which is closest to the noisy current state C created above is identified as 
km,n using the least root mean square difference between C and each column of the matrix 
P. Then the next state of Ps is defined as the successor; 

𝑃𝑠(𝑖,1+𝑡) =  𝑘𝑚+1,𝑛+1 
7. The state Ps(i,1+t) is now the current state of Ps. Increment t. The next state of Ps is selected 
by repeating steps 5–6. The process of incrementing t and selecting the next state continues 
until the current state of Ps is equal to one of the sets in B. 
8. The value i can then be incremented and steps 4–7 repeated to obtain the next surrogate. 
An optimal value for ρ (Step 5) elicits the greatest number of small segments within the 
surrogate time series (Small et al., 2001), providing an optimal balance between effectively 
destroying the fine-scale dynamics of the signal and maintaining its macro structure. As ρ 
increases, so too will the number of small segments, towards a maximum, before returning 
toward zero (as ρ → ∞). Ranges of ρ were tested in order to determine the optimal value for 
each block of throws analysed. 
Elbow and Shoulder time series were concatenated and combined to form the two 
dimensional phase space from which the respective surrogates were drawn. The number of 
surrogates generated matched the number of throws in the observed data for each block. 
Surrogates with similar length (± 1SD) as the mean length in the original data were accepted 
to maintain comparability. If this criterion was not met, the surrogate was rejected and the 
process repeated. 
To demonstrate the ability of the technique to produce surrogates which approximate the 
macro structure of the original data, surrogate Mean, SD and data length were compared to 
that of observed signals using Mann-Whitney U tests. Furthermore, these values were 
assessed for reliability using intraclass correlation and standardised typical error tests 
(Hopkins, 2000, 2011). 
Sample entropy (Lake et al., 2002; Richman & Moorman, 2000) estimates of the observed 
and surrogate data were used for statistical inference. It was hypothesised that the observed 
time series would return lower sample entropy than surrogates as they are not solely the 
result of noisy, random processes, but contain some element of deterministic dynamics. The 
lower entropy score of the observed data would reflect the increased regularity of a signal 
under the control of the neuromuscular system as opposed to the random, stochastic 
process producing the surrogate. Sample entropy (m = 2 and r = 0.1) was estimated for the 
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concatenated real and surrogate time series of the three joint angles for all blocks of throws. 
These scores were compared using the Mann-Whitney U test. Non parametric statistics 
were employed as data did not display normality (Peat & Barton, 2005). 
 
RESULTS: Surrogates were effectively generated for all observed throws. An example of 
elbow and shoulder time series and their respective surrogates can be seen in Figure 1. 
 

 

Figure 1: Example of elbow and shoulder data (left panels) and their respective surrogates 
(right panels) 

Results of the Mann Whitney U tests indicated that observed joint angular displacement time 
series had significantly lower sample entropy (p ≤ 0.01) than their respective surrogate 
(Figure 2). 
 

 

Figure 2: Difference between observed and surrogate entropy estimate (± IQR) for elbow and 
shoulder time series, significant at p ≤ 0.01 

The comparison of macro characteristics (mean, SD and length) showed no significant 
differences between the real and surrogate throws (p ≥ 0.68). Reliability analysis indicated 
that the surrogate generation algorithm was able to consistently produce this output as 
indicated by an ICC ≥ 0.99 and a small standardised typical error (≤ 0.1) (Hopkins, 2000, 
2011). 
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DISCUSSION: Comparison of the sample entropy score for both real and surrogate data 
(Figure 2) indicated that the observed discrete human movement is not solely the product of 
non-deterministic ‘noisy’ processes. Hence, the surrogate method effectively disrupted the 
micro structure of the signal while the macro characteristics of the observed data were 
maintained.  Similar results have been shown in previous work using a pseudo periodic 
surrogate with normal gait and race walking (Miller, et al., 2006; Preatoni, et al., 2010). 
Coupled with the ability of the algorithm to consistently produce the expected outcome, the 
proposed surrogate method is both a valid and reliable technique to investigate the presence 
of deterministic dynamics in other discrete human movement time series.  
 
CONCLUSION: Sample entropy can provide useful information about the complexity and 
organisation of the neuromuscular system. Being able to prove the existence of determinism 
in signals to be analysed using entropy measures lends validity to any observed outcomes 
which can be attributed to purposeful changes within the organism and not solely to 
stochastic/random processes. Together, sample entropy and the proposed surrogate 
method may provide a useful tool for the further exploration of movement variability within 
discrete sporting movements.  
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