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The primary aim of this study is to compare the ability of three commonly used clustering 
techniques to identify movement strategies within countermovement jumps. A secondary 
aim is to interpret the identified movement strategies. A hierarchical, k-means using non- 
and normalized subject scores and an Expectation-Maximization approach using 
normalized subject scores were examined. The ability to identify movement strategies 
was measured using the r2-value of a regression model to describe jump height. Clusters 
of the best clustering solution were examined for differences. Hierarchical clustering 
utilizing normalized subject scores to generate 4 clusters appears to be the most suitable 
technique. The generated clusters demonstrated clear defining characteristics. 
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INTRODUCTION: A major aim of biomechanical studies is the identification of performance 
related features within a movement to allow development of high quality training programs. 
To identify such factors, biomechanical studies commonly use a single group analysis 
design assuming that performance related features are equal across individuals. However, 
different individuals may use different movement strategies (Vanezis & Lees, 2005), and in 
turn may have different performance related features. When examining a group of 
individuals that use different movement strategies, a single group design can mask 
performance related factors (Stergiou & Scott, 2005; Nicholas Stergiou, 2004). A solution to 
a single group analysis design is the subgroup analysis design. A subgroup analysis design 
clusters individuals with similar movement patterns into separate groups (and allows the 
identification of performance related factors for each of the movement strategies with the 
examined group). The advantage of the subgroup analysis design have been demonstrated 
in human gait studies (e.g. Toro, Nester, & Farren, 2007). However, when performing a 
subgroup analysis design the user has to select a clustering technique and the number of 
movement strategies that have to be separated. While a number of clustering techniques 
exist, which may result in different clusters (Jain, Murty, & Flynn, 1999; Martinez, Martinez, & 
Solka, 2004), there is a lack of biomechanical studies that have compared the ability of 
cluster techniques to identify movement strategies. Hence, the primary aim of this study is to 
compare the ability of three commonly used clustering techniques to identify movement 
strategies within the countermovement jump (CMJ). A secondary aim is to interpret the 
identified movement strategies. 

METHODS: This study recruited 122 athletes, who were free from any injury and 
experienced in performing a CMJ. The University Ethics Committee approved the study and 
all subjects signed an informed consent form before participation. Prior to data collection, 
every subject completed a standard warm-up routine. The subjects performed 15 maximum 
effort CMJs without an arm swing, standing with each foot on a force platform, and rested for 
30 seconds between the trials. A motion analysis system (Vicon 512 M, Oxford Metrics Ltd, 
England) and two force plates (BP-600900, AMTI, MA, USA) recorded the position of a set 
of spherical reflective markers (250 Hz) and the vertical ground reaction force (1000 Hz), 
respectfully. Jump height was calculated by the center of mass velocity at takeoff. Based on 
jump height, the best jump performance of each subject was chosen for data analysis. All 
curves were normalized to body mass and only the propulsion phase was used for analysis 
because the performance outcome (jump height) is fully determined by the propulsion phase 
(impulse-momentum relationship). Kinematic and kinetic variables for each joint were 
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computed for the left and right body side. The average of a kinematic and kinetic variable 
from both body sides was used for data analysis. Joint kinetics were calculated using inverse 
dynamics (Winter, 2009). To cluster the captured kinematic and kinetic waveforms, subject 
scores were computed using Analysis of Characterising Phases (Richter et al., 2013a). 
Subject scores were computed for key phases using the magnitude domain. Key phases 
were identified using VARIMAX rotated functional principal components, which retained 
more than 99 % of the variance within the data's magnitude domain (Richter et al., 2013b). 
To classify the data, the computed subject scores were input into a hierarchical and a k-
means approach using normalized and non-normalized subject scores, and into an 
Expectation-Maximization algorithm using non-normalized subject scores. The normalization 
of the input data was performed by transforming the subject scores into their correlation 
matrix, which quantifies numerically the relationship between them. The hierarchical 
algorithm calculated pairwise distances using Euclidean distance, and created a hierarchical 
cluster tree using the nearest distance (Martinez et al., 2004). The k-means classification 
technique used the Euclidean distance as the distance measure and the Expectation-
Maximization algorithm was applied using the Gaussian mixture model (Martinez et al., 
2004). The number of clusters was set to increase from one to ten clusters. The 
performance of each cluster technique was measured by assessing the ability to explain 
variances in jump height (dependent variable) across generated clusters. This approach was 
based on the assumption that an appropriate grouping of subjects does not mask 
performance related factors and hence enhances the ability to describe variances in jump 
height. In order to assess the ability to explain variances in jump height for a given number 
of clusters the average r2-value of a stepwise regression analysis was computed across 
these clusters. Input variables for the regression model were similarity scores measured 
solely over the key phases of a cluster. If the stepwise regression analysis was not able to 
identify any predictor variables within a cluster, the highest r2-value computed during the 
correlation analysis (between the generated subject scores and jump height) was used. If a 
cluster technique assigned only one participant to a cluster, the cluster was discarded. The 
entire process was repeated 10 times using different random initial weights in the k-means 
and model based clustering to achieve a repeatable measure of the expected accuracy. The 
clustering technique with x groups that generated the highest stable ability to explain 
variances in jump height was considered the most appropriate clustering technique. To 
understand the underlying neuromuscular capacities of the generated clusters the following 
section performed a one-way ANOVA (Bonferroni adjustment for multiple comparisons) to 
identify differences between the generated clusters using joint angle, angular velocity, joint 
moment and joint power of the ankle, knee and hip joint. All statistical analyzes were 
performed using MatLab (R2012a, MathWorks Inc., USA). 

Results: Hierarchical clustering (normalized scores) reached its highest stable ability to 
describe jump height using seven clusters (92 %), k-means (normalized scores) reached its 
highest stable ability using four clusters (90 %), k-means (non-normalized scores) reached 
its highest stable ability using six clusters (88 %) and hierarchical clustering (non-normalized 
scores) reached its highest stable ability to describe jump height using five clusters (88 %). 
The Expectation-Maximization algorithm did not show a stable ability to describe jump height 
for any number of clusters. Hierarchical clustering (normalized scores) with seven clusters 
was able to describe jump height best. However, varying the number of clusters in 
hierarchical clustering (normalized scores) between four and eight clusters had no major 
impact on the ability to explain jump height (1 %), while using four clusters results in greater 
sample sizes within the clusters. Due to the insignificantly lower ability to describe jump 
height and the greater sample sizes using four clusters (allowing stronger statistical 
analysis), the authors’ decided to use hierarchical clustering (normalized scores) with four 
clusters for further analyses, rather than the seven clusters. Cluster 1, 2, 3 and 4 contained 
6, 40, 25 and 52 subjects, respectively. Due to the small sample size in cluster 1 and the 
resulting limited statistical power  and increased probability of committing a type II error 
(Cohen, 1988), cluster 1 was discarded from further analysis. The statistical analysis for 
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differences between the clusters 2, 3 and 4 indicated significant differences over numerous 
phases in joint angles, angular velocity, joint moment and joint power. Differences between 
cluster groups are detailed in Table 1. 
 
Table 1: Significant differences in joint angle, angular velocity moment and power of the ankle, knee 

and hip joint between cluster 2, 3 and 4. The ‘phase’ column reports the phase over which 
significant differences occored and the ‘differences’ column reports which culsters differed 
from each other. 

 Ankle Joint Knee Joint Hip Joint 
 phase  differences phase  differences phase  differences 

Jo
in

t a
ng

le
 1-25% C3 > C2, 4 1-25 % C3, 4 > C2 1-21 % C4 >3> C2 

67-84% 
-- 

C3 > C2, 4 
--- 

67-85 % 
-- 

C3, 4 > C2 
-- 65-83 % C4 > C2, 3  

C3 >C2 
98-100% C3 >C2, 4 99-100 % C3,4 >C2 99-100 % C4 >C2, 3 

An
gu

la
r v

el
oc

ity
 

-- -- 8-19 % C4 >C2, 3 -- -- 

29-41% C3, 4 >C2 37-50 % C4 >C2, 3 31-41 % C2, 3 > C4 

54-66% C4 >C2 -- -- 51-60 % C2, 3 > C4 
-- 
-- 

-- 
-- 66-79 % C3 >C2 

C4 > C2 
-- 
-- 

-- 
-- 

81-89% C4 >C2 -- -- -- -- 

-- -- 99-100 % C2 >C3, 4 -- -- 

Jo
in

t 
m

om
en

ts
 1-6% C4 >C2 1-7 % C2, 4 >C3 1-6 % C3 > C4 

29-45% C4 > C2 34-49 % C4 >C2, 3 24-40 % C3 > C4 

62-75% C4 >C3 -- -- 71-78 % C2 >C4 

89-96% C2 >C3, 4 89-95 % C2 >C3, 4 85-89 % C2 >C4 

Jo
in

t p
ow

er
 

-- -- 1-2 % C4 >C3 -- -- 

9-19% C4 >C2 10-28 % C4 >C2, 3 18-31 % C3 > C4 

32-44% C3, 4 >C2 -- -- -- -- 

57-68% C4 >C2 50-65 % C4 >C2 49-60 % C2, 3 >C1, 4 

79-86% C4 >C3 -- -- 83-88 % C2 >C4 

93-98 C2 >C3 91-96 % C2 >C3, 4 -- -- 
 
DISCUSSION: The examined clustering techniques differed in their performance. The k-
means (normalized scores) and hierarchical clustering (normalized scores) demonstrated 
the best abilities to identify movement strategies within the data. This highlights the use of k-
means and hierarchical and the importance of normalizing subject scores when identifying 
movement strategies. Normalizing subject scores (transformation of scores into their 
correlation matrix) had a significantly positive effect on the performance of both hierarchical 
and partitional clustering techniques, indicating that differences in magnitude between 
subject scores are not as effective as their quantified numerical relationship at maximising 
the ability to identify movement strategies. Non-normalized scores describe similarity in 
movement strategy using a combination of the magnitudes within each of the identified 
phases of variation. Hence, different movements strategies with similar magnitudes (e.g. in 
knee moment) may erroneously appear more similar than movement strategies with different 
magnitudes. In contrast, normalized scores describe similarity of a movement based on the 
pattern in the magnitudes between the identified phases.  
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The optimal clustering approach generated 3 distinct movement strategies. Defining 
characteristics of cluster 2 are low knee and hip joint angles (greater joint flexion), the ability 
to generate large knee moments, to maintain hip moments towards the end of the movement 
cycle and a delayed ankle, knee and hip peak power. Defining characteristics of cluster 3 are 
high ankle and knee joint angles (greater joint extension) throughout the movement cycle, 
the inability to generate large ankle and knee moments, the ability to generate large initial 
hip moments and the inability to maintain large moments towards the end of the movement 
cycle. Defining characteristics of cluster 4 are high ankle moment throughout much of the 
movement cycle, the ability to generate large initial knee moments, and the inability to 
generate large hip moments. Given that there are a number of movement strategies, this 
may explain the inconsistencies in previous findings. The number of participants with 
particular strategies (e.g. cluster 2, 3 and 4) can influence the finding within a group analysis 
design. For example, some studies found peak moments in the knee joint to be greater than 
the ankle joint (Bobbert, Huijing, & van Ingen Schenau, 1987; Vanrenterghem, Lees, & De 
Clercq, 2008), while others found the opposite (AragonVargas & Gross, 1997; Vanezis & 
Lees, 2005). The number of participants with particular strategies may also explain, at least 
in part, why performance related factors identified across studies differed in previous studies. 
This highlights the use of a subgroup analysis. 

CONCLUSION: Hierarchical clustering utilizing normalized subject scores to generate 4 
clusters appears to be the most suitable technique for clustering force curves, while k-means 
clustering (normalized subject scores with 4 clusters) also showed a high level of suitability. 
The generated clusters demonstrated clear defining characteristics, which at least in part 
explain inconsistencies in findings of previous studies. Consequently, utilizing a subgroup 
analysis might give a better insight into which factors relate to performance in a movement 
task. This allows the optimization of a training interventon in relation to a specific movement 
strategy. 
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