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This paper reconsiders the challenge of analysing coordination in human movement with 
particular emphasis on the application of Functional Data Analysis and Functional 
Principal Component Analysis. The process of Functional Data Analysis is outlined using 
examples from biomechanics of sports injuries and coordination in race-walking, jumping 
and running. The evolution of the spring mass model used to describe jumping and 
hopping behaviour is examined and it is proposed that this model represents a 
coordination structure in human movement which may be appropriately analysed using 
Functional Data Analysis methods.    
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INTRODUCTION: In a previous Geoffrey Dyson Lecture, Hamill et al. (2006) considered how 
well methods of complex analysis had contributed to the understanding of overuse injuries in 
sport. This work focused on the use of discrete and continuous relative phase techniques to 
examine the joint and segment coupling coordination structures in running and concluded 
that those methods could lead to a deeper understanding of the injury process. While 
traditional methods of analysis in biomechanics often focus on a single joint or segment 
using discrete measures such as peak displacement, velocity or force, such approaches are 
inadequate when considering the more complex nature of coordination. Human coordination 
is a complex process that integrates various functional aspects of muscle action and 
movement and the multiple degrees of freedom in each of these processes. Coordination 
may be inherently variable due to the interaction of the multiple degrees of freedom in the 
components of coordination. To analyse coordination effectively, it is important that variation 
is considered from a functional perspective rather than the traditionally held view that high 
levels of variation imply increased noise in the data and low levels of reliability. Therefore, 
appropriate methods for analysing coordination should ideally consider the modes of 
variation in the data and be able to distinguish biological variability from measurement error.   
Various approaches have evolved to analyse the complexity of coordination and most of 
these methods involve some form of dimension reduction in data. In this paper I consider 
various examples of the application of Functional Data Analysis (FDA) and Functional 
Principal Component Analysis (FPCA) in examining time series and coordination data in 
sports biomechanics.  
 
FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS: Principal Component Analysis (PCA) 
is a statistical technique, which is ideally suited to dimension reduction and examination of 
the modes of variation in experimental data. Traditionally PCA has been used to examine 
and interpret data sets that are discrete in nature rather than continuous time series or 
families of curves. PCA reduces the dimensionality of an experimental problem by converting 
a large number of measures into a smaller number of uncorrelated, independent variables, 
i.e. principal components (PCs) that explain the modes of variation in the experimental data. 
Currently two distinct approaches have been used to apply PCA to the analysis of 
biomechanical data sets. These approaches are: PCA of waveforms (Deluzio & Astephen, 
2007; Deluzio et al., 2013) or Functional PCA (FPCA) which is generally categorised as part 
of a larger analysis process, Functional Data Analysis (FDA) which was originally introduced 
by Ramsay & Dalzell (1991). 
In PCA of waveforms, the original curves are re-sampled to ensure equal numbers of records 
on every waveform and then entered into a large matrix where a Principal Component Score 
(PC) is derived for each data point on the waveform. While this procedure is relatively easy 
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to implement using proprietary software applications such as IBM® SPSS® (IBM, New York, 
USA) or Minitab (Pennsylvania, USA), it has some limitations: 

1. Creating data sets of equal length may result in distortion of the time series.  
2. Smoothing and calculation of derivatives is carried out separately from PCA 

procedures resulting in unknown and potentially unwanted sources of 
variation entering the PCA.  

3. Most importantly, in PCA of waveforms, the data points on the curve are 
assumed to be independent of each other, but in reality we know that any 
point on a curve is correlated to the data points that precede and follow that 
point.  

4. It may be difficult to relate the waveforms described by each PC to functional 
patterns of specific subjects in the experimental population. 

 
FDA was devised by Ramsey and Dalzell (1991) in an attempt to rectify some of the 
limitations of other approaches. The distinctive feature of FDA is that the entire sequence of 
data points for a measurement are considered as a single entity or function rather than as a 
series of individual data points (Ryan, et al., 2006). The term functional in FDA and functional 
principal component analysis (FPCA) refers to the intrinsic nature of measurements 
frequently obtained in biomechanics experiments. While biomechanical data are often 
obtained at various regularly spaced time points, these measurements can be assumed to be 
generated by some relatively smooth underlying function.  
 
Steps in Functional Data Analysis  
FDA can incorporate several different procedures, but the following steps are typically used 
when FDA is applied to the analysis of biomechanical data: 
 

Step 1. Data representation: derivation of smooth functions 
Step 2. Registration of data, i.e. time normalisation or landmark registration (optional) 
Step 3. Functional Principal Component Analysis 
Step 4. Visualising the results of Functional Principal Component Analysis  

 
In step 1 functional data are represented by some form of basis function where the 
smoothing and derivation of functions are generally linked processes and the decision on the 
choice of appropriate basis functions is dependent on the nature of the data being analysed. 
Typically, kinematic and kinetic data can be represented on a functional basis using B-
splines. These have been shown to be useful basis functions for smoothing biomechanical 
data because their structure is designed to provide the smooth function with the capacity to 
accommodate changing local behaviour (Coffey, et al., 2011). B-splines consist of polynomial 
pieces joined at certain values of the data series called knots, however other basis functions 
may be appropriate depending on the nature of the raw data collected. 
 
In Step 2 of FDA, the data may be normalised using land mark registration which ensures the 
major features of a family of curves such as minima or maxima are aligned. This is an 
optional step which can be used to reduce the point-wise variation across trials, however, 
landmark registration is not always suitable to every analysis because landmarks may be 
missing from certain curves or the timing of landmarks may be ambiguous. Therefore, this 
step is not always included in FDA and the decision whether to register the data should be 
made on a case-by-case basis. Ryan and Harrison (2006) demonstrated the effects of 
landmark registration on kinematic data of the vertical jump in children where the maximum 
downward displacement of the centre of mass varied between subjects. 
 
Step 3 of FDA generally involves the application of Functional Principal Components 
Analysis which is an extension of the classical multivariate technique to the functional 
domain. In this case, eigenfunctions rather than eigenvectors are used to represent the 
principal components (PC). A major advantage of FPCA is that it produces PCs that are 
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functions defined in the same domain or state space as the original functional observations 
and consequently, the functional principal components (FPCs) extracted in the analysis have 
a definite biomechanical interpretation. The FPC is presented as function within the state 
space (i.e. it is expressed in the same domain as the original function) and a multiple of this 
FPC can be added to (or subtracted from) the overall group mean curve to demonstrate the 
exact effect of the FPC. Figure 1 show two FPCs for the leg abduction-adduction angle 
(ABD-ADD) during stance phase in running (Donoghue et al., 2008). 
 

  

A     B 

Figure 1.  The first two FPCs for abduction-adduction movement. (Donoghue et al. 2008). 

Step 4 of FDA requires the representation of the results in ways that allow insightful 
interpretation. Ramsay and Silverman (2005) recommend the use of graphs presenting the 
ensemble mean curve of the original function together with the functions obtained by adding 
and subtracting a suitable multiple of each FPC function. Figure 2 shows this form of 
presentation for the first 3 FPCs on the leg abduction-adduction angle data sets of Donoghue 
et al. (2008). The interpretations of these graphs are relatively simple. Figure 2A shows that 
high scorers in the first functional principal component (FPC1), illustrated by the plus (+) 
signs, are characterised by a leg abduction-adduction angle that is higher than the mean 
function throughout stance. Conversely, low scorers illustrated by the minus (-) signs are 
characterised by a leg abduction-adduction angle that is lower that the ensemble mean angle 
throughout stance.  
 
 
A         Mean  3FPC1 B        Mean  3FPC2 C         Mean  3FPC3 

   
Figure 2. Visualising Functional Principal Components. The graphs show the first 3 principal 
component of leg abduction-adduction during stance from Donoghue et al (2008). In all cases 
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the mean function is accompanied by the graphs of high scorers (+) and low scorers (-) on 

each FPC. 
 
Figure 2B shows the effect of FPC2 relative to the ensemble mean function, with high 
positive scorers tending to display leg ABD angles that are greater than average at heel-
strike, and high negative scorers tending to display smaller leg ABD angles at heel strike. 
Therefore FPC2 describes the precise leg abduction-adduction movements associated with 
heel strike. Figure 2C shows FPC3 for the same data set and it is clear that high positive 
scorers tend to display increased leg abduction-adduction range of motion and negative 
scorers tend to display decreased leg abduction-adduction range of motion. Therefore FPC3 
is representative of leg abduction-adduction range of motion throughout the stance phase. 
Donoghue et al. (2008) used FPCA to examine the effects of in-shoe orthoses on the 
kinematics of the lower limb in subjects with previous Achilles tendon injury compared to 
uninjured controls. Donoghue et al. (2008) provided evidence using FPCA that in-shoe 
orthoses appeared to constrain some movement patterns but restored some aspects of 
variability in other movements. 
Coffey et al. (2011) took this analysis further using an extension of FPCA which they called 
Common FPCA.  
 

FPC1 Ankle dorsi-flexion    FPC1 Scores comparison 
(80% Variance explained) 

 

 
Figure 3  Functional principal component for ankle dorsi-flexion on stance phase in running 
and analysis of FPC scores for injured subjects wearing orthotics, [AT(O)], without orthotics, 
[AT(NO)] and uninjured limb [control]. Coffey et al. (2011). 

 
This technique appears to be better suited to analysis of families of curves where repeated 
measures designs are used. Using Common FPCA on the data of Donoghue et al (2008), 
Coffey et al. (2011) provided evidence that control subjects had greater levels of variability in 
lower limb movement patterns than injured subjects. 
 
FPCA also provides and effective means for analysing coordination structures in 
biomechanical data through the application of bivariate FPCA. This has been used to 
distinguish differences in kinematic jumping patterns and coordination in groups of children at 
various stages of development (Harrison, Ryan, & Hayes, 2007; Ryan, et al., 2006). While 
standard FPCA extracts FPCs from a single variable, in bivariate FPCA each component 
consists of a vector of FPCs which can be represented on the state space relative to the 
ensemble mean curve. Figure 4 shows coordination analysis on leg ABD-EV data using 
bivariate FPCA based on the data set of Donoghue et al. (2008). The analysis shows that the 
majority of the variation during co-ordination occurs through differences in the leg ABD angle 
(the vector points almost horizontal indicating little/no change in the EV angle). High positive 
scorers on this bivariate FPC display increased levels of abduction throughout stance with 
little relative change in eversion angle. 
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  A     B 
 
Figure 4. At A, the ensemble average angle-angle plot of the leg ABD vs EV coordination is 
plotted. B. Shows the bivariate FPC as a vector relative to the ensemble mean function.   

 
An alternative approach by Doná et al. (2009) applied FPCA bilaterally to sagittal knee angle 
and net moment data in race-walkers of national and international level and found that 
scatterplots of FPC scores provided evidence of technical differences and asymmetries 
between the subjects even when traditional analysis (mean ±s curves) was not effective, 
(see figure 5).  

 
 
Figure 5. Characterisation of knee joint angle in the sagittal plane. For clarity of representation 
scatterplots of only two athletes (s2 and s6) are reported: (a) scatterplot of the scores for FPC2 
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versus FPC1 – the best athlete is represented by black triangles and the lesser performing one 
by grey triangles. (b, c) the mean knee angle curve is shown with curves created by adding 
(black plus) and subtracting (grey minus) a multiple of FPC1 (b) and FPC2 (c). Adapted from 
Doná et al. (2009) 

 
Doná et al. (2009) concluded that FPCA was sensitive enough to detect potentially important 
technical differences between higher and lower skilled athletes and therefore FPCA might 
represent a useful and sensitive aid for the analysis of sports movements, if consistently 
applied to performance monitoring, (see Figure 5). All of the above studies highlight the 
importance of treating variability in the data as a real, biological phenomenon that has a 
structure which can be separated from the noise or error information generated by data 
acquisition. In this respect FPCA appears to be a very useful in examining the modes of 
biological variability found in biomechanical studies of coordination. 
 

CONCEPTS OF STIFFNESS APPLIED TO RUNNING AND JUMPING:  Since the early 
work of Blickhan (1989), McMahon et al. (1987) and Farley and Gonzalez (1996) running, 
jumping and hopping in humans has frequently been described using a linear spring-mass 
model that stores and releases mechanical energy through muscle-tendon structures. 
Generally this model describes the lower limb as a spring which compresses during landing 
and returns to full length assisted by muscle contraction before take-off. The overall stiffness 
of the lower limb consists of a combined stiffness of the joint actions and stiffnesses of the 
muscle and tendon structures. While much important recent research focuses on the 
characterisation of stiffness components of isolated muscle and tendon using optic fibre 
technology (Finni and Komi. 2002) or ultrasound (Couppé, et al., 2003; Lichtwark & Wilson, 
2005) the total stiffness of the limb can be estimated using force platform analysis or a 
combination of  force platform and motion analysis.  In sprinting, it has been proposed that 
when an athlete has accelerated to maximum running velocity, (which is attained after 25 to 
50 m depending on performance level), then performance may be limited by the ability of the 
athlete to maintain speed, (Locatelli and Arsac, 1995). Research studies on lower limb 
stiffness have shown that during fast running, the leg action behaves like a linear spring, 
(Farley et al., 1991; Farley et al., 1996; McMahon et al., 1987). The stiffness of the leg 
spring, Kleg can be described by the force-displacement relationship of the spring mass 
model which can be determined by dividing the peak ground reaction force by the change in 
leg length, L and the vertical stiffness, Kvert equals the peak vertical ground reaction force 
divided by the vertical displacement of the centre of mass, y (see Figure 6). In vertical 
hopping Kvert=Kleg. 

 

   
 
Figure 6: Diagram of the spring-mass model during running L0, L, y, and  represent the 
initial length of the leg spring, the maximum compression of the initial length of the leg spring, 
the maximum vertical displacement of the centre of mass, and the half of the angle swept by 
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the leg spring during the stance phase, respectively. The spring–mass model drawn with a 
discontinuous line represents the uncompressed leg spring. The arc drawn with a 
discontinuous line represents the path of the mass (centre of mass of the subject) during the 
stance phase. (Adapted from, Chelly and Denis, 2001) 

 
Over the last 30 years, various researchers have demonstrated the importance of leg-spring 
and vertical stiffness in fast running and hopping activities. Arampatzis et al. (1999) found 
that leg stiffness increased with increasing running speed and Farley et al. (1991) found that 
the stiffness of the leg-spring can change as much as twofold to accommodate different 
hopping frequencies. Chelly and Denis, (2001) showed that leg stiffness values are 
correlated to maximal running velocity (r = 0.68, P < 0.05). Similarly, experimental research 
on well trained athletes has also shown that sprinters have significantly higher leg spring 
stiffness compared with distance runners (Harrison et al., 2004). It is therefore clear that the 
capacity to interact with the ground using a stiff spring-like action of the lower limb is critical 
in encouraging a fast cadence, short ground contact time and fast running speed in the 
speed maintenance phase of sprinting. While the spring-mass model appears to provide a 
useful representation of lower limb function in running, hopping and jumping, the ability of 
this model to discriminate between groups has been somewhat disappointing. For example, 
Hobara et al. (2011) found no statistically significant effect of stretching on leg stiffness and 
no significant differences in leg stiffness between males and females at various hopping 
frequencies (Hobara et al., 2012). Furthermore the reliability of stiffness measures, especially 
measures of joint stiffness, has been poor. Joseph et al. (2013) demonstrated good reliability 
for vertical stiffness (ICC=0.87), moderate reliability for leg stiffness (ICC= 0.85) and poor 
reliability for knee and ankle stiffness (ICC= 0.51 and 0.56 respectively) during a running 
task. Further inspection of leg and joint stiffness results across various studies consistently 
shows high levels of variability in stiffness measures with coefficients of variation ranging 
10% - 25% for leg stiffness and up to 50% for joint stiffness (Bradshaw, et al, 2013; Hobara 
et al., 2009). It appears that stiffness reliability may be dependent on the nature of the 
measure of stiffness used however this is based on an assumption that the reliability of a 
measure is dependent on its variability. In many studies, stiffness is often defined as a single 
(discrete) measure rather than a description of the force-displacement relationship during 
ground contact. 
In figure 7B, this measure of stiffness is indicated by the gradient of the line between the 
origin and the grey circle at the middle of the stance phase. This illustrates the potential 
oversimplification of stiffness as a discrete point measure derived from a continuously 
varying signal. 

 
 
 

 
 
Figure 7: Diagram of the spring-mass model during vertical hopping. At A, the action of the 
hopping is illustrated at the start, middle and end of the stance phase. In B, a typical vertical 

7



ground reaction force vs centre of mass displacement curve for vertical hopping. Leg stiffness 
is represented by the slopes (dotted lines) of these curves in the leg compression phase. 
(Adapted from, Hobara, et al. 2011) 

 
Treating leg and joint stiffness as discrete point measures introduces a similar problem 
encountered earlier when analysing coordination structures. Furthermore, the high levels of 
variability observed in measures of leg and joint stiffness may results from the multiple 
degrees of freedom of the components of stiffness coordination and as such this variability 
may be an essential biological feature of the stiffness rather than a source of error 
contaminating the measures. It is recommended that analysis of leg and joint stiffness should 
be treated as a coordination issue rather than a discrete parameter and as such it is likely 
that the application of FDA on stiffness coordination may provide improved insight on the role 
that stiffness control may play in the biomechanics of sport and sports injuries.    
 
CONCLUSION: The question of whether complex analyses, particularly FDA have 
contributed significantly to the understanding of the biomechanics of sports performance and 
sports injuries was revisited. Based on the results of various studies it is concluded that FDA 
and FPCA have provided some useful insights. The potential applications of FDA in sports 
biomechanics are numerous and varied. FDA appears to provide particular strengths in 
analysing coordination structures since it presents analysis in the same state space as the 
coordination structure and this can facilitate clearer insights into specific changes in 
coordination patterns. Furthermore, the FPCs produced in the analysis relate directly to the 
functional behaviour of specific subjects in the population being examined and this 
strengthens the validity of the conclusions drawn from FPCA. While FDA and FPCA appear 
to provide a promising addition in analysing biomechanical data, some caution is advised to 
ensure that FDA is used appropriately.  As pointed out by Hamill (2006), if a simple analysis 
method results in the answer to a specific question, then there is no need for a more complex 
technique. Looking forward, it recommended that sports biomechanics as a discipline should 
explore and seek to advance the application of FDA, particularly in the analysis of stiffness 
control in running hopping and jumping and in other coordination related analyses. 
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