
 

 

P04-22 ID100 

MECHANICAL ENERGY FLOW IN THE ARM SEGMENTS DURING OVERARM 
THROWING FOR SKILLED JAPANESE ELEMENTARY SCHOOLBOYS 

Yasuto Kobayashi1, Michiyoshi Ae2, Akiyo Miyazaki2,  
Norihisa Fujii2, Akira Iiboshi3 

1Doctoral Program in Physical Education, Health and Sport Sciences, University 
of Tsukuba, Tsukuba, Japan 

2Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan 
3Faculty of Education, Kagoshima University, Kagoshima, Japan 

The purpose of this study was to investigate the mechanical energy flow in the arm 

segments during overarm throwing for skilled Japanese elementary schoolboys. The 

throwing motions of 42 boys from the second, fourth, and sixth grade were videotaped using 

three high-speed cameras. Seven boys from each grade were selected for 3-D motion 

analysis, based on their throwing distance. The increases in the mechanical energy of each 

segment have occurred from proximal to distal segment and the joint force power resulted in 

greater change in the mechanical energy of the ball and throwing arm segments, regardless 

of the school grade. The elementary school boys developed the abilities to generate the 

greater mechanical energy and to flow the generated mechanical energy toward distal 

segments of the throwing arm by the joint force power.  
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INTRODUCTION: In physical education lesson of elementary schools, teachers should 

prepare appropriate training programs to meet individual students’ “readiness”. However, they 

frequently encounter difficulties in determining workouts and practice for children because of 

a wide range of their developmental and skill levels. In particular, overarm throwing is 

considered to be one of the most difficult motions to teach, because the throwing arm moves 

very fast in a three-dimensional space and has a large number of degrees of freedom. The 

Japanese Ministry of Education, Culture, Sports, Science and Technology (2011) concerns an 

acute decline in the Japanese children’s throwing ability. Therefore, it is important to gain 

insights into children’s throwing motion with regard to age and development in physique for 

designing appropriate teaching programs. 

Many of biomechanical studies on the children’s throwing motion have focused on the joint 

kinematics. In contrast, there are some investigations on the mechanical energy flow in the 

throwing arm segments of adult’s throwers. Jöris, van Muyen, van Ingen Schenau & Kemper 

(1985) analyzed the overarm throwing of 56 female handball players, and concluded that the 

consecutive actions of body segments from the larger proximal segments to the relatively 

smaller distal segments were connected to intrinsic muscle properties and to an energy flow 

from the proximal to the distal segments. Shimada, Ae, Fujii, Kawamura & Takahashi (2003) 

analyzed the baseball pitching motion of 22 varsity players, and reported that the great 

mechanical energy flow into the distal segment due to the joint force power was observed in 

the throwing arms joints.  

Investigation on the mechanical energy flow in children’s overarm throwing would enhance 

understanding of the mechanism of children’s throwing motion and provide useful information 

to design appropriate training programs for the improvement in the throwing performance. 

Therefore, the purpose of this study was to investigate the mechanical energy flow in the arm 

segments during overarm throwing for skilled Japanese elementary schoolboys.  

 

METHODS: Forty-two Japanese boys from the second, fourth, and sixth grades of one 

elementary school participated in this study. They were instructed to throw a softball (8.5 cm 

in diameter; 141 g in mass) twice with their maximal effort, according to the procedure of the 

Japan Fitness Test regulated by the Japanese Ministry of Education, Culture, Sports, Science 



 

 

and Technology, in which the ball size was specified and the longer throw of two trials was 

adopted as the best performance. The subjects’ throwing motion was videotaped using three 

high-speed digital cameras (Exilim EX-F1, Casio Co., Japan) operating at 300 Hz, 

which were synchronized using a light-emitting diode synchronizer.  

Based on their throwing distance as determined with a tape measure, seven boys from each 

grade (second grade, 1.23±0.04 m in height, 24.1±3.1 kg in body mass; fourth grade, 

1.36±0.05 m, 33.4±7.3 kg; sixth grade, 1.47±0.05 m, 40.4±6.7 kg) were regarded as good 

throwers and one throwing motion with the longest throwing distance for each subject was 

selected for 3-D motion analysis. All selected subjects were right-handed throwers.  

Twenty-three body landmarkers defined by Yokoi, Shibukawa & Ae (1986) and the centre of 

the softball were digitized with a digitizing system (Frame-DIASⅡ,DKH Co., Japan). 

Three-dimension coordinate data were reconstructed by the DLT method and were smoothed 

by a Butterworth digital filter with cut-off frequencies ranging from 7.5 to 12.5 Hz, which were 

decided by the residual method after Winter (2009). 

The height, velocity, and angle of the ball at the release were obtained from 3-D data. The 

location of the centre of mass, mass and the moment of inertia for the subjects’ body 

segments was estimated after the children’s body segment parameters of Yokoi et al. (1986). 

The segments mechanical energy was calculated as the sum of the potential, translational 

and rotational energy of the segment by using kinematic data. The segments mechanical 

power was obtained by differentiating the segments mechanical energy by time. 

Inverse dynamics with a three-rigid-body model consisting of the upper arm, forearm and 

hand was used to calculate the joint force and torque at the wrist, elbow, and shoulder of the 

throwing arm. The joint force power (JFP) was calculated as a dot product of the joint force 

and the joint velocity, and the power generated by the joint torque (hereafter segment torque 

power, STP) was calculated as a dot product of the joint torque and the angular velocity of the 

segment, according to the notation and calculation method of Winter (2009) and Shimada et 

al. (2004). The joint force power and segment torque power divided by the subject’s body 

mass were normalized by the time of the throwing phase, which was defined from the instant 

of stride foot contact to the instant of ball release as 100 %.  

ANOVA was used to test the effects of school grade on variables, followed by Scheffe’s 

method for a multiple comparison. The level of significance was set at 5 %. 

RESULTS: There were significant differences in throwing distance (second graders: 

16.30±3.54 m, fourth graders: 25.58±4.50 m, sixth graders: 35.34±4.35 m, p<0.05) and ball 

velocity (second graders: 14.05±1.62 m/s, fourth graders: 17.77±1.92 m/s, sixth graders: 

21.76±1.30 m/s, p<0.05). No significant differences in release angle and release height ratio 

relative to body height were found among the three grades. 

Figure 1 shows the patterns of the mechanical energy change in throwing arm segments for 

typical throwers from each grade. 

In the sixth grader, the mechanical energy of the upper arm and forearm increased in the 

middle of the throwing phase, and those of hand and ball sharply increased before the 

release. Although the magnitude of the mechanical energy of the arm segments was greater 

in the sixth grader, there was no remarkable difference in the pattern of the change in the 

mechanical energy among the three grades. 

 

 

 

 

 

 

 

 

 

Figure 1: Patterns of mechanical energy of throwing arm segments for the typical throwers. 



 

 

Figure 2 shows the patterns of mechanical power, joint force power and segment torque 

power of the upper arm (top), forearm (middle) and hand (bottom) for the throwers from  

each grade. The mechanical power of the segment is equal to the sum of the joint force  

powers and the segment torque powers at the proximal and distal ends, which is so-called 

“mechanical power balance” (Winter, 2009).  

upper arm: In these throwers, the joint force power of the shoulder was positive during the 

throwing phase, while that of the elbow was great in negative power. The positive segment 

torque power of the shoulder before the release was greater in the sixth grader than those of 

the second and fourth grader. 

forearm: In the sixth grader, after the increase in the positive joint force power of the elbow, a 

greater negative joint force power of the wrist was exerted before the release. The segment 

torque power of the elbow was negative in these throwers until 80 % time and changed to the 

positive just before the release, while the segment torque power of the wrist was close to zero 

in almost the whole phase. 

hand: The mechanical power of the hand of the sixth grader increased toward the release, 

and its peak was much greater than those of the second and the fourth grader. In these 

throwers, the positive joint force power of the wrist was exerted before the release, while the 

segment torque power of the wrist changed slightly from the negative to the positive.  

Table 1 indicates the peak joint force power of the shoulder, elbow and wrist for all analyzed 

throwers. 

There were significant differences in the peak joint force powers of all joints between the 

second graders and the sixth graders (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Patterns of mechanical power, joint force power (JFP) and segment torque power 

(STP) of upper arm (top), forearm (middle) and hand (bottom) for the typical throwers. 

 

Table 1: Peak joint force power of the shoulder, elbow and wrist for all analyzed throwers. 

 

 

 

 

 

 



 

 

DISCUSSION: The increases in the mechanical energy of each segment have occurred from 

the proximal to the distal segment in the typical throwers. This pattern of the mechanical 

energy change indicates that an energy flow between segments took place even in children’s 

overarm throwing via the joint during the throwing phase, as Jöris et al. (1985) pointed out on 

the female’s handball throwing. The energy flow between the throwing arm segments helps to 

accelerate the ball effectively by the mechanical energy generated by the muscles of the trunk 

and shoulder which have greater capacity for generating the mechanical energy than the 

distal ones. 

The positive power at the joint of a segment indicates an increase in the mechanical energy of 

the segment, and the negative power indicates a decrease in the mechanical energy (Winter, 

2009). In these throwers, the pattern of change in the mechanical power of the hand was 

similar to the joint force power of the wrist, and the segment torque power of the hand at the 

wrist was small in the entire throwing phase. This result indicates that the change in the 

mechanical energy of the ball is largely influenced by the mechanical energy flow through the 

joint force power of the wrist which was common in the grades.  

The increases in the joint force power of throwing arm joints took place in the similar order as 

the segments’ mechanical energy in the throwers, and the magnitudes of joint force power 

were greater than those of the segment torque power. These indicate that the change in the 

mechanical energy of the throwing arm segments depended on the joint force power more 

than the segment torque power in the overarm throwing, regardless of grade. Furthermore, 

the peak joint force powers of all joints were significantly greater in the sixth graders than the 

second graders. Therefore, it is likely that the joint force power of the sixth graders greatly 

contributed to the large mechanical energy flow from the distal to the proximal segments. 

In the sixth grader, there were greater positive joint force power of the shoulder during the 

whole throwing phase, and the positive segment torque power of the upper arm at the 

shoulder increased before the release. It is considered that these positive powers at the 

proximal end of the upper arm of the sixth grader result in the greater joint force power of the 

elbow more than the second and fourth graders. Kobayashi, Ae, Miyazaki & Fujii (2012a, 

2012b) reported that the range of motion of the trunk and the positive joint torque power of the 

shoulder internal-external rotation increased with the increase in the school grade. It is 

inferred that the elementary schoolboys generated the mechanical energy by using larger 

proximal segments with the increase in the school grade and flowed the mechanical energy to 

the distal segments of the throwing arm by the joint force power. This is one of the 

developments in boys’ throwing motion from a viewpoint of the mechanical energy flow and 

may be one of reasons of the significant difference in the ball velocity among the three 

grades. 

 

CONCLUSIONS: The throwing distance and ball velocity significantly increased with increase 

in the school grade. The increases in the mechanical energy in arm segments occurred from 

the proximal to the distal segment in the present throwers. The joint force power resulted in 

the greater change in the mechanical energy of the ball and throwing arm segments than the 

segment torque power, regardless of the school grade. The peak joint force powers of the arm 

joints were significantly greater in the sixth graders than the second graders. Thus, the 

elementary school boys developed the abilities to generate the greater mechanical energy 

and to flow the generated mechanical energy toward the distal segments of the throwing arm 

by the joint force power. 
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