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The aim of this study was to assess and contrast the ability of discrete point, functional 

principal component analysis (fPCA) and analysis of characterizing phases (ACP) to 

describe a dependent variable (jump height) from vertical ground reaction force curves 

captured during the propulsion phase of a countermovement jump. A stepwise multiple 

regression analysis was used to assess the ability of each data analysis technique. The 

order of effectiveness (high to low) was ACP, fPCA and discrete point analysis. Discrete 

point analysis was not able to generate strong predictors and detected also erroneous 

variables. FPCA and ACP detected similar factors to describe jump height. However, ACP 

performed better than fPCA because it considers the time and magnitude domain separately 

and in combination and it examines key-phases, without the influence of non-key-phases. 
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INTRODUCTION: While discrete point analysis has significant limitations, the majority of 

studies in biomechanics almost exclusively use discrete point analysis. Limitations in discrete 

point analysis are the need to pre-select discrete measures (e.g. maximums, minimums, 

overall duration) and the loss of possibly extremely important information (Donoghue et al., 

2008, Doná et al., 2009, Richter et al., 2012). In recent years, researchers have sought new 

ways to analyze data as a continuous signal rather than discrete measures; introducing 

techniques originating from a variety of fields - e.g. computer science, psychology, cognitive 

science, physics and engineering (Chau 2001a; Chau 2001b; Kelso 1995). One of the most 

promising techniques is functional principal component analysis (fPCA), which reduces the 

dimensionality of a set of signals while preserving the information needed to describe a data 

set (Jolliffe 2002). FPCA is part of the functional data analysis family, and treats a signal as a 

single function rather than as a series of individual data points (Ramsay 2006). However, 

fPCA: (a) can mask important features of the data because functions are analyzed as a whole 

rather than as key-phases, with the non-key-phases of the functions inappropriately altering 

results, (b) cannot identify the specific phase of features (subjective visual inspection is 

needed), and (c) cannot examine the combined magnitude-time domain, which can hold 

important information. To overcome these limitations, Analysis of Characterizing Phases 

(ACP) has been recently proposed (Richter et al. 2012). The idea behind ACP is to detect 

key-phases (phases of variance) within a sample of curves, which are used to examine 

differences between populations or a relationship to a dependent variable (i.e. performance 

determining factor) in the time, magnitude and magnitude-time domain. To date, no study has 

directly measured and compared the performance of discrete point analysis, fPCA and ACP 

to evaluate their ability to identify those variables explaining the movement outcome. 

In order to compare the performance of the abovementioned analysis techniques it is 

necessary to examine a movement signal that fully determines the movement outcome. This 

criterion is met in countermovement jumps by examining jump height in relation to the vertical 

ground reaction force (force) trace of the propulsion phase (impulse momentum relationship).  

The aim of this study was to measure and contrast the performance of discrete point analysis, 

fPCA and ACP to describe jump height (dependent variable) using the propulsion phase of 

the force-time history of a countermovement jump. 



 

 

 

METHODS: A stepwise multiple regression analysis was used to assess the ability of discrete 

point analysis, fPCA and ACP to explain a dependent variable. 

Dependent Variable: The jump height of a countermovement jump (CMJ) was chosen as the 

dependent variable. Force curves of 60 athletes captured during CMJs were used for data 

analysis. All athletes were free from any injury and experienced in performing a CMJ. The 

University Ethics Committee approved the study and all subjects were informed of any risk 

and signed an informed consent form before participation. Prior to data collection, every 

subject completed a standard warm-up routine. The subjects performed 15 maximum effort 

CMJs without an arm swing, standing with each foot on a force platform, and rested for 30 

seconds between the trials. Two force plates (BP-600900, AMTI, MA, USA), each with a 

frequency of 250Hz, recorded the produced force. Jump height was calculated by the impulse 

momentum relationship. Based on jump height, the best jump performance of each subject 

was chosen for data analysis. All curves were normalized to body mass and only the 

propulsion phases were used for analysis.  

Discrete Point Analysis: Based on previous literature (Cormie et al., 2009;Dowling et al., 

1993; Sheppard et al., 2008; Petushek et al., 2010, Newton et al. 1999) the following discrete 

features were identified and used for statistical analysis: a) initial force, b) maximum force, c) 

initial-to-maximum rate of force development, d) time from initial-to-maximum force, e) 

position maximum force (in %), f) time from maximum force to take-off, and g) propulsion 

phase duration. The initial-to-maximum rate of force development was calculated (Equation 1) 

from the initial force to the point   at which the maximum force occurred (Cormie et al., 2009). 

The mean force was not included in the selected variables. Mean force was discarded 

because it reflects the impulse momentum relationship in jumps and does not easily relate to 

the underlying neuromuscular control nor can it indicate specific training interventions to 

enhance performance.  

                                        Eq. (1) 

Functional Principal Component Analysis: FPCA was performed to generate principal 

component scores, which were used for statistical analysis (Ramsay 2006). The used 

principal component scores retained 99% of the variance of the data and were VARIMAX 

rotated to optimize their interpretability (Ramsay 2006).  

Analysis of Characterising Phases: ACP was applied to detect key-phases within the captured 

force curves. Key-phases were used to calculate participant scores capturing the time, 

magnitude and magnitude-time domain (Richter et al., 2012). VARIMAX rotated functional 

principal components (retaining 99% of the data’s variance) were used to identify key-phases 

(Richter et al., 2012). Participant scores were used for statistical analysis and generated by 

calculating the area between a participant’s curve (p) and the mean curve across the data set 

(q) for every point (i) within a key-phase (Equation 2 and 3).  

                         Eq. (2) 

                
    

                                      Eq. (3) 

The separated force features (discrete points, principal component scores and participant 

scores) were input into a stepwise multiple regression analysis to assess the ability of discrete 

point analysis, fPCA and ACP to explain jump height. Data processing was performed in 

MATLAB and statistical analyses were performed using SPSS 20. 

 

RESULTS: The discrete point analysis was able to explain 26.3% of the variance in jump 

height (Table 1). Predictor variables were peak force and phase duration. FPCA explained 

82.8% of the variance in jump height using principal component scores generated from four 

principal components as predictor variables (Table 1). ACP explained 99.3% of the variance 

in jump height using five key-phases as predictor variables utilizing information from the time 

domain, magnitude domain and the magnitude-time domain (Table 1). 

  



 

 

Table 1:  Generated regression models using features generated by discrete point analysis, 

fPCA and ACP 

Discrete point analysis 
Functional principal component 

analysis 

Analysis of  

Characterizing Phases 

feature 
standardiz

ed coefficient 

feature  

estimated phase 

standardize

d coefficient 

feature 

domain | phase 

standardize

d coefficient 

peak force 0.73 PCscore5  80-88% -0.74 phase 5     comb.| 82-87% 0.52 

phase duration 0.50 PCscore1    1-13% 0.33 phase 2     comb.| 28-42% 1.28 

  
PCscore2  24-46% -0.39 phase 3       time | 91-94% 1.95 

PCscore3  90-95% -0.32 phase 4     comb.| 57-69% 0.71 

    phase 1     comb.| 1-9% 0.75 

    phase 3     comb.| 91-94% 0.38 

    phase 3     mag.| 91-94% -0.22 

r² = 0.263 r² = 0.828 r² = 0.993 

 

DISCUSSION: Direct comparison between discrete point analysis, fPCA and ACP indicates 

that discrete point analysis has the lowest ability to describe jump height. Discrete point 

analysis generated the lowest r²-values because it was not only incapable to generate strong 

predictors from the force curves, also it generated erroneous variables. For example, the 

predictor variable maximum force used in the regression model is erroneous because it does 

not describe a specific neuromuscular capacity. The force curves examined were non-, uni- or 

bi-modal, with maximum force potentially occurring at either peak1. Consequently, maximum 

force does not represent a consistent measure across subjects and has to be discarded. In 

contrast to predictor variables generated by discrete point analysis, predictor variables in 

fPCA and ACP are strong predictors and do relate to the underlying neuromuscular control. 

Therefore, findings of fPCA and ACP may help to indicate effective training interventions. 

fPCA identified forces at the beginning (ca. 1-13%) the middle (ca. 24-46%) and the end (ca. 

80-88% and ca. 90-95%) of the movement cycle as predictor variables. Predictor variables 

used in the ACP regression model were phases in the beginning (1-9%) and the middle 

(28-42% and 57-69%) utilizing the force-time domain; and the end (91-94%) of the movement 

cycles utilizing the time, force and force-time domains (Table 1). The fPCA and ACP 

regression model out-perform the discrete point regression model in respect to (a) their ability 

to describe jump height, and (b) generate meaningful information to develop or improve 

training programs.  

The comparison of ACP to fPCA indicates that ACP has the greater ability to describe jump 

height then fPCA2. FPCA generated lower r²-value than ACP because it does consider only 

the magnitude domain, discarding both the time and magnitude-time domain. The time 

domain should always be included during an analysis as it holds important information – the 

standardized coefficient of the time domain was one of the largest in the discrete point and 

ACP regression model. Consequently, including the variable ‘phase duration’ to the fPCA 

regression model increases its ability to explain variances in jump height by 12% (r² = 94.8%). 

This highlights the importance of the time domain. Further, the importance of examining the 

magnitude-time domain is indicated by the ACP regression model. Selected variables are 

frequently from the magnitude-time domain. Based on the fact that the regression analysis 

chose variables capturing the combined magnitude-time information rather than the 

magnitude information alone, highlights the need for examining the combined domain. 

                                                 
1
  Mean maximum force position =  39%; standard deviation maximum force position =  29%; 

2
  This was also the case when the number of predictor variables in the ACP model was reduced. 

An ACP regression model with four predictor variables already described 97.3% of the variance 

in the jump height.  



 

 

CONCLUSION: FPCA and ACP showed a greater ability to describe jump height compared to 

discrete point analysis because FPCA and ACP: (a) analysed only related phases of the force 

curve and hence examine comparable neuromuscular capacities, (b) analysed the whole 

force curve rather than prior selected discrete data points, and (c) can identify features that 

occur solely as a phase. The comparison between fPCA and ACP highlighted a greater ability 

of ACP to describe jump height. ACP out-performed fPCA, because it (a) analyzes the time, 

magnitude and magnitude-time domain of a curve and, (b) examines specifically only 

key-phases rather than the full movement cycle. 
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