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The aim of this study was to compare the effectiveness in identifying performance 
determining factors using discrete point analysis (DPA), functional principal component 
analysis (fPCA) and a novel technique, analysis of characterizing phases (ACP). Twenty 
five vertical ground reaction force (force) curves, recorded during a vertical 
countermovement jump, were analyzed. Due to bi-modal force curves, DPA 
inappropriately identified the rate of force development as a performance determining 
factor. In contrast, fPCA and ACP identified the phase around the peak before and after 
the rapid drop in force as a performance determining factor. While both continuous 
techniques showed greater benefit in analyzing the captured data than DPA, ACP seems 
to be more reliable because it does not rely on visual observation. 
 
KEY WORDS: functional principal component analysis, analysis of characterizing 
phases. 
 

INTRODUCTION: The identification of performance determining factors is a major goal for 
sports biomechanics. Performance determining factors provide useful information to athletes, 
coaches and sport scientists for developing and improving training programs in order to 
increase performance outcome. However, performance determining factors identified in 
vertical jump studies are often inconsistent, with some reporting peak vertical ground 
reaction force (force) as a performance determining factor (Dowling & Vamos, 1993; Cormie, 
McBride, & McCaulley, 2009), while others do not (Morrissey, Harman, Frykman, & Han, 
1998; Newton, Kraemer, & Häkkinen, 1999; Petushek, Garceau, & Ebben, 2010). This might 
not be due to inter-participant variability alone. The vast majority of studies use a discrete 
point analysis (DPA) technique to identify performance determining factors. This approach 
holds three potential limitations: a) it uses just a few individual pre-selected data points to 
summarize a complex continuous signal and could therefore discard potentially important 
information, b) it cannot examine the time phase that performance determining factors are 
evident before and after the analyzed data point, and c) an inconsistency in selected 
variables exists between studies. One possible solution that addresses these issues is to 
examine continuous signals as a whole, which can be undertaken using a functional principal 
component analysis (fPCA) or a novel approach which we have termed analysis of 
characterizing phases (ACP). The aim of this study was to examine if the mentioned 
techniques differ in identifying performance determining factors in the vertical jumps from 
their force data. 

METHODS: This study used 25 force curves captured during vertical jumps from 25 male 
athletes (age = 22.0 ± 4.0 years; mass = 77.8 ± 9.8 kg) who were free from any injury at time 
of data capturing and who were experienced in performing vertical jumps. The University 
Ethics Committee approved the study and all subjects were informed of any risk and signed 
an informed consent form before participation. Prior to the data collection, every subject 
completed a standard warm-up routine (Marshall, 2010). The subjects performed 15 
maximum effort jumps without an arm swing, standing with each foot on a force platform and 
rested for 30 seconds between the trials. Two force plates (BP-600900, AMTI, MA, USA), 
each with a frequency of 250Hz, were used to record the produced force. Based on jump 
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Figure 11:  Illustration of steps used during an
analysis using fPCA and ACP 

height, the best jump performance of each subject was identified and ranked across the 
participants. The top ten and lowest ten ranked performances were used to build a ‘good’ 
and a ‘poor’ performance group, while the five middle performances were discarded to 
maximise the differences between the groups of interest. All curves were normalized to body 
weight (BW) and only the propulsion phases were used for analysis.  

For DPA, based on previous studies (Dowling & Vamos, 1993; Morrissey et al., 1998; 
Newton et al., 1999; Cormie et al., 2009; Petushek et al., 2010) the following prior selected 
data points were identified (Figure 1) and 
used for statistical analysis: a) initial force, 
b) mean force, c) peak force, d) time initial-
to-peak force, e) percentage initial to peak 
force, f) time peak force to take off, g) 
initial-to-peak rate of force development 
(RoFD), and h) duration of the propulsion 
phase. RoFD was assessed as the rate of 
development from the initial force to the 
point at which the highest peak force 
occurred (Cormie et al., 2009).  
The continuous data analysis techniques 
used similar approaches to analyse data and are briefly explained together (for further 
information see: Ramsay, 2006; Harrison, Ryan, & Hayes, 2007). The transformation of the 
captured discrete data to functional data was the first step in both fPCA and ACP (Figure 2). 
While fPCA transforms only the force data, ACP transforms the force and the corresponding 
time data for analysis. The transformed force data was then used to compute a variance-
covariance matrix (Step 2) which describes the variance in the data set. To examine the 
created matrix, both analysis techniques perform an Eigen analysis (Step 3a). Computed 
Eigen vectors, also called principal components, represent a specific pattern of variance 
stored in the data and the corresponding Eigen value represents its influence. The principal 
components and Eigen values were VARIMAX rotated. In contrast to fPCA, ACP analyzed 
the principal components (Step 3b) to identify and sort pattern-characterizing phases from 
high to low potential using the peak of each principal component. After the Eigen analysis 
was performed both techniques express the behaviour of each subject with a score (Step 4). 
fPCA used a principal component score, which reflects how a subject is affected by a 
principal component over the whole function, while ACP used a similarity score, which 
expresses the similarity of a 
subject to the best jump using the 
Euclidean distance within the 
phase with the highest pattern-
characterizing potential between 
duplicated signals of the original 
data (i.e. it holds magnitude and 
temporal properties). To examine 
if differences between the ‘good’ 
and ‘poor’ jump groups exists, an 
independent t-test (Step 5a, 
p<0.05) was performed on the 
principal component and similarity 
scores. In contrast to fPCA, ACP 
returned to Step 4 (via Step 5b), if 
a statistical difference was evident, 
to recalculate the subject scores 
using the phase(s) with the next 
lower pattern-characterizing 
potential until no significant 
difference between the similarity 
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scores exists (in steps of 5% of the peak). Lastly, both techniques visualise the results (Step 
6) to aid interpretation. fPCA used a plot (Figure 3a) consisting of the functional overall mean 
curve and the a multiple of the computed principal component (as suggested in Ramsay, 
2006), while ACP created a duplicate of the original data set to calculate and plot the mean 
curve for the ‘good’ and ‘poor’ performance groups, indicating on both mean curves where a 
significant difference between the two groups exist (Figure 3b). 

RESULTS: Members of the ‘good’ performance group (31.4 ± 1.73 cm) jumped significantly 
higher (p < 0.001) on average (8.2 ± 1.93 cm) than the ‘poor’ (23.2 ± 2.12 cm) group. Using 
DPA, significant differences between the ‘good’ and ‘poor’ groups in pre-selected variables 
were found for: initial-to-peak RoFD (p=0.003). The continuous data analysis techniques 
used the first five principal components, which together describe 100 % of the variability in 
the data, with principal component 1,2,3,4 and 5 describing 22, 17, 28, 8 and 25 %, 
respectively. In fPCA and ACP, no differences in subject scores were found for the first to 
fourth principal component (p > 0.05), while the subject scores for the fifth principal 
component  did differ (p = 0.006 in fPCA; p = 0.045 in ACP) between the ‘good’ and ‘poor’ 
performance groups (Figure 3).  

DISCUSSION: The examined data analysis techniques differed in identifying performance 
determining factors: DPA identified the initial-to-peak RoFD as a performance determining 
factor, fPCA identified the fifth principal component as a performance determining factor and, 
ACP identified the magnitude of the force in combination with the timing for the phase of 65-
93% of the movement cycle as a performance determining factors. In fPCA, the visualisation 
of the fifth principal component (Figure 3a) indicates that the ‘good’ performance group tends 
to produce higher force values at the estimated area of 65-85 % in the movement cycle, 
while the peak force seems to continue for longer. 

In relation to the initial-to-peak RoFD, separate examination of each curve and descriptive 
statistics indicated a large distribution in the position (timing) of the peak force, with many 
curves being bi-modal in nature. We believe implicitly that RoFD variables should describe 
the neuromuscular capacity to ‘continue to increase force’ and hence requires a continuous 
increase in force during the measurement. This criterion is not met in a bi-modal curve when 
peak force can occur at the second peak and when RoFD is calculated relative to initial or 
minimal force (as undertaken in this study and all of the research reviewed). Therefore, while 
initial-to-peak RoFD was found to be mathematically feasible it clearly compares different 
neuromuscular capacities, and hence is functionally irrelevant as it would not easily relate to 
either a specific exercise action or any subsequent instruction to change jump technique. 
Additional the bi-modal nature of the curves results in a non-significant ‘peak force’, in DPA. 
Subsequently, based on the findings of the continuous data analysis we divided the force 
curves into two phases (phase 1: 0-60%; phase 2: 60%-100%) and analyzed, using DPA, the 
peak force for each phase separately. A significantly higher peak force in the second phase 
(p = 0.025) was found in the ‘good’ performance group. In DPA, without the information of the 

Figure 3a:  Pattern of variation defined
between the groups detected using
fPCA by principal component 5.

Figure 3b: Phase (65-93 %) of difference
between the groups detected using
ACP and principal component 5. 

mean curve 
tendency good performance 
tendency poor performance 

+++
good performance 
poor performance 
sig. difference xx 



 
 

387 
30th Annual Conference of Biomechanics in Sports – Melbourne 2012 

 

continuous methods is the performance determining factor ‘peak force’ of the second phase 
covered by the bi-modal nature of the curves. This can explain contrasting findings in 
previous studies regarding RoDF (Morrissey et al., 1998; Newton et al., 1999; Cormie et al., 
2009), peak force (Newton et al., 1999; Cormie et al., 2009; Petushek et al., 2010) or small 
correlations between peak force and jump height (Dowling & Vamos, 1993). In contrast to 
DPA, continuous data analysis is not influenced by variation in positions of key events (e.g. 
peak force). Additionaly, fPCA and ACP have no subjective influence on the data analysis 
and all phases that characterize a data set are examined regardless of what has been 
previously understood in the subject area. Therefore, the continuous techniques examined 
are more appropriate than DPA because they: a) compare only related phases of the curve 
and hence comparable neuromuscular capacities, b) analyse the whole data set rather than 
prior selected discete data points, and c) identify over which period data differ. These 
characteristics help in failing to identify important variables and consequently help to 
understand new or little researched fields more effectively than it is possible with DPA 
techniques.  
The findings of the continuous data analysis techniques do not differ as both techniques 
identified higher forces produced over a longer period prior and after the rapid drop in force 
as a performance determining factor. However, finding of ACP are more reliable. In contrast 
to fPCA, ACP can facilitate a statistical analysis to determine significant different areas and 
the source (magnitude, timing or the combination of both) of the difference between the 
groups, while in fPCA no statistical information is provided about the source of the difference 
and the interpretation over which phase a difference exists relies on visual observation.  

CONCLUSION: Only the continuous data analysis techniques identified the area around the 
peak prior and after the rapid drop in force as a performance determining factor. In particular, 
ACP seems to be more reliable than fPCA because it does not rely on visual observation and 
can facilitate a statistical analysis to determine the source (timing, magnitude and the 
combination of both) that causes the difference. The advantages of continuous data analyses 
methods highlight the potential of their use in analyzing biomechanical data related to other 
movements. 
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