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This study determined whether a higher dynamic deflection point (DDP) was evident 
when using a driver fitted with a stiff shaft of greater mass and whether between-shaft 
differences were evident in swing and launch parameters. Twelve elite male golfers had 
three shots analysed for each of two drivers fitted with “stiff” shafts of different mass (56 g 
and 78 g). Six swing and launch parameters were measured by a real-time launch 
monitor and the (DDP) was measured using a motion analysis system. Between-shaft 
differences were evident for the DDP at maximum, but not at ball impact. Between-shaft 
differences in swing and launch parameters for the heavier shaft resulted in; lower launch 
angles (p<0.001), increased spin rates (p<0.001) and steeper attack angles (p<0.001). 
The findings show the importance of DDP and optimising swing and launch parameters.  
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INTRODUCTION: All methods to increase hitting distance off the tee in golf should be 
considered, including club characteristics. Important properties of the golf club’s shaft 
include; stiffness, damping, torsional stiffness, mass, and maximum deflection point (or kick 
point) (Wallace & Hubbell, 2001; Cheong, Kang, & Jeong, 2006). Whilst previous authors 
suggest that golfers attempt to use bending of the shaft to maximise clubhead speed 
(Mather, Smith, Jowett, Gibson, & Moynihan, 2000; McGinnis & Nesbit, 2010; Betzler et al., 
2011), the experimental evidence is less convincing (Wallace & Hubbell, 2001).  
The maximum deflection point of a golf club is measured under static conditions and is 
typically considered as the furthest point from a line joining the two ends of a loaded shaft 
(Jackson, 2001). The deflection point of clubs used by high level players occurs between 44–
60% of shaft length when expressed as a distance from the club’s tip (Mather et al., 2000; 
Cheong et al., 2006). It has been postulated that heavier shafts provide a higher deflection 
point and result in lower ball launch angles (Mather et al., 2000; Summitt, 2000; Jackson, 
2001; Cheong et al., 2006). However, little objective evidence of the dynamic behaviour of 
the shaft exists to support these claims. Whether other launch (ball) and swing (club) 
parameters, such as attack angle of the clubface into the ball vary with changes to shaft 
mass has not been reported by other researchers.  
Swing and launch parameters influence carry distance. For example, a positive attack angle 
(where the club ascends in relation to the ground at ball impact), higher launch angle and 
lower spin rate are all believed to result in increased carry distance. Specifically, excessive 
ball spin created from a negative attack angle is believed to reduce carry distance (King & 
DeNunzio, 2008; Tuxen, 2008), however, research into how the shaft influences this is 
needed.  
This study was conducted to determine whether a higher dynamic deflection point (DDP) was 
evident when using a driver fitted with a shaft of greater mass, and whether between-shaft 
differences were evident in selected swing and launch parameters. 
 
METHODS: Twelve right-handed elite male golfers (mean ±SD; age 24.7 ±6.0 y, handicap 
1.2 ±1.8 score) were recruited based on criteria of having; a registered golfing handicap ≤ 5 
and being aged between 18-35 years. All participants were informed of the research 
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procedures prior to testing and all provided informed consent. Ethical clearance to conduct 
the study was provided by the Institutional Human Research Ethics Committee.   
In this study each participant used two drivers. Each driver had the same grip (length=0.27 
m) and driver head (mass=200 g, face angle=10 °), however, two interchangeable Graphite 
Design™ YS5 (56 g) and YS7 (78 g) “stiff” shafts (1.13 m long, inclusive of grip) were used. 
These shafts were used as they are used by elite-level players. 
Prior to this study, an approach to determine the DDP of the shaft was developed. This 
involved positioning 11 lightweight retro-reflective markers (1.4 cm diameter) along the shaft 
of the golf club. One of these markers was placed at the bottom of the grip (P1), while the 
remaining 10 markers (P2-P11) were equi-spaced down the shaft (7 cm apart), so as the last 
marker (P11) was positioned over the tip of the shaft. Under static conditions, when the club 
was bent, the deflection point was considered as the point on the shaft where the 
perpendicular distance from a vector connecting the most proximal and distal markers on the 
club was maximised. The shape of the shaft was approximated using cubic spline 
interpolation. This process generated 101 points per frame so that the deflection point could 
be determined with sub-marker precision. 
This method was validated by comparing estimates of the static deflection point (SDP) 
determined by a professional club-fitter, to those made by an algorithm that used coordinates 
of the 11 markers captured by a 10-camera, MX-F20 Vicon-Peak Motion Analysis system 
(Oxford Metrics, Oxford, UK) operating at 500 Hz. To determine the SDP, the club fitter fixed 
each club in a vice (10 drivers fitted with shafts of varying stiffness and mass were used), 
and a 2.3 kg load was suspended from the distal end of the shaft (Jackson, 2001). Once the 
golf club/load system was stabilised, the SDP was visually determined with the aid of a shaft 
kick-point board (Surrey Golf, Australia). From the Bland-Altman plot and limits of agreement 
statistics (Figure 1), there was minimal systematic bias.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Bland-Altman plot with multiple measurements per shaft showing the 95% limits of 
agreement between the professional club fitter and the Motion Analysis (MA) method. Data 

were measured in percentage of shaft length.  
 
During golf swing testing, each participant hit a total of 12 shots (six shots per club). To 
eliminate potential bias, participants were blinded to the mass of the shaft that was fitted to 
the drivers they were using. Shots were hit from an artificial turf surface into a net positioned 
5 m in front of the player. Participants were instructed to hit the golf ball straight with 
maximum velocity. A real-time launch monitor (PureLaunch™, Zelocity, USA) was positioned 
4-5 m directly behind the hitting area to measure selected swing and launch parameters and 
was also used to ensure the ball was hit within a standard 37 m wide fairway (USGA).  
Three of six shots hit using each shaft were analysed. The selected trials were those 
displaying maximal clubhead speed and minimal marker drop out. All coordinate data were 
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smoothed, using a Woltring filter with a mean square error of 20 mm². The resulting 
coordinate data were then exported as text files and were subsequently analysed using the 
above mentioned algorithm implemented with Microsoft Excel. 
For each shot hit, the DDP at point of maximum bend and at ball impact was calculated. 
Maximum bend was identified as a time period relative to the top of the backswing. Top of 
the backswing was defined as the frame where the grip marker (P1) changed direction to 
initiate the downswing. Ball impact was considered as the frame where the golf ball was 
shown to commence movement as determined by a retro-reflective marker positioned on the 
ball. Six swing and launch parameters were collected from the launch monitor at ball impact, 
they being; clubhead speed, ball velocity, launch angle (of ball), spin rate, attack angle (of 
club-face), and predicted carry distance. Negative angle of attack values indicated that the 
clubhead was descending, in relation to the ground, at the point of ball impact (Tuxen, 2008). 
Between-trial reliability of DDP locations at maximum and ball impact was determined using 
intra-class correlation coefficients (ICC (3,3)) and absolute Standard Error of Measurement 
(SEM). Independent t-tests were then conducted to determine whether the DDP locations 
differed between-club (56 g and 78 g shafts). Paired t-tests were used to determine whether 
parameters measured by the launch monitor differed between-shaft. All standard 
assumptions for parametric tests were met. Bonferroni adjustments were made for each type 
of t-test therefore, alpha levels were set at 0.025 for DDP variables, and 0.008 for swing and 
launch parameters. To determine whether relationships existed between selected swing and 
launch parameters and predicted carry distance, Pearson’s Correlation Coefficients were 
conducted for swing and launch parameters of each shaft. For these analyses, p≤0.05 
denoted significance. All analyses were performed using SPSS V19.0 for Windows (SPSS 
Inc, Seattle, WA, USA).   
 
RESULTS AND DISCUSSION: Good to excellent levels of reliability were found for firstly, 
the location of the DDP at maximum (ICC=0.936-0.957, SEM=0.4-1.1%) and ball impact 
(ICC=0.932-0.951, SEM=0.8-1.2%) and secondly, the variables generated from the launch 
monitor that are reported in Table 1. Therefore, the data from three trials were averaged to 
provide a single, representative data point for each participant. The DDP at maximum bend 
occurred at 0.082 s (±0.038 s) after the top of the backswing for both clubs. A significant 
difference (p=0.019) was found for the DDP at maximum between the driver fitted with the 56 
g shaft (58.7 ±4.2% from the club tip) and the club fitted with the 78 g shaft (62.1 ±2.0%). No 
between-shaft difference (p=0.190) was found for DDP at ball impact (56 g - 51.1 ±4.7%, 78 
g - 54.3 ±3.8%). Between-shaft differences were evident for launch angle, spin rate and 
attack angle (Table 1). For the heavy shaft, spin rate was negatively (r=-0.790, p<0.05), and 
attack angle (r=0.622, p<0.05) positively associated with predicted carry distance. The 
findings of a lower DDP and greater launch angle for the lighter shaft were consistent with 
previous anecdotal reports (Mather et al., 2000; Jackson, 2001; Cheong et al., 2006). 
Compared to the heavier shaft, the lighter shaft experiences a lower rotational inertia, due to 
a smaller moment arm between the clubhead and lower DDP. This reduces the lag of the 
clubhead in the downswing and this may help produce higher launch angles and a less 
negative attack angle at ball impact. (Mather et al., 2000; Summitt, 2000; Jackson, 2001; 
Cheong et al., 2006; King & DeNunzio, 2008; Tuxen, 2008). The higher DDP for the heavier 
shaft experienced a greater rotational inertia, which increased the lag of the clubhead and 
produced a lower launch angle and a more negative attack angle. The heavier shaft 
displayed an increased spin rate at ball impact. Due to the absence of between-shaft 
differences in clubhead speed and ball velocity, predicted carry distance was probably 
influenced by the significant between-shaft differences in launch parameters.  
It has previously been stated that elite golfers who use heavier shafts with a higher SDP, will 
induce faster clubhead speeds to increase predicted carry distance (Mather et al., 2000; 
Tuxen, 2008). However, with no between-shaft difference in clubhead speed and ball 
velocity, and a higher spin rate seen for the heavier shaft, this may have lead to similar 
between-shaft values of predicted carry distance. A potential limitation of the study was that 
aerodynamic performance of the clubs may have been influenced by the markers being 
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placed on the club however, as markers were placed on both clubs, the effect of this 
potential problems was effectively controlled for.  
 
 
Table 1: Mean (SD) and reliability (ICC & SEM) data from the real-time launch monitor for 
drivers fitted with 56 g and 78 g “stiff” shafts. Indices of reliability are also reported. 

  
56 g shaft 
Mean (SD) 

 
 

ICC 

 
 

SEM 

 
78 g shaft 
Mean (SD) 

 
 

ICC 

 
 

SEM 
 
Clubhead Speed (m/s) 
 
Ball Velocity (m/s) 
 
Launch Angle (°)* 
 
Attack Angle (°)* 
 
Spin Rate (rpm)* 
 
Predicted 
Carry Distance (m) 

 
48 (2) 

 
67 (2) 

 
11 (3) 

 
-2 (3) 

 
3578 (407) 

 
 

215 (7) 
 

 
0.908 

 
0.867 

 
0.872 

 
0.841 

 
0.802 

 
 

0.786

 
1 
 
1 
 
1 
 
1 
 

181 
 
 
3 

 
48 (2) 

 
67 (2) 

 
8 (2) 

 
-3 (1) 

 
4166 (438) 

 
 

212 (15) 

 
0.940 

 
0.905 

 
0.912 

 
0.856 

 
0.797 

 
 

0.902 

 
1 
 
1 
 
1 
 
1 
 

197 
 
 
4 

* - indicates a significant difference (p≤0.008) between-shaft. 
 
CONCLUSIONS: A between-shaft difference was evident for DDP location at maximum, 
which is consistent with findings from previous authors stating that heavier shafts have a 
higher deflection point. While no between-shaft differences were evident for clubhead speed 
or ball velocity, elite golfers using the driver fitted with the 78 g shaft produced lower launch 
angles, an increased spin rate and a more negative attack angle when compared to the 56 g 
shaft. However, no difference was seen for predicted carry distance which may have been 
due to between-shaft differences in spin rate and attack angle. The findings of this study are 
of benefit to golf teaching professionals, club-fitters, and biomechanists, whose aim it is to 
understand how DDP of differently weighted shafts differs during the downswing, and what 
affect this has when attempting to optimise launch parameters.  
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