INTEGRATING BIOMECHANICS AT THE ELITE LEVEL: THE TENNIS AUSTRALIA EXPERIENCE

Machar Reid^{1,2} and David Whiteside²

Tennis Australia, Australia¹ School of Sport Science, Exercise and Health, University of Western Australia, Perth, Australia²

Technical skill is key to tennis success. Qualitative critiques of technique are commonplace in the sport. The use of quantitative biomechanics analysis in aiding athlete development has been limited in tennis however, owing largely to its cost, the expertise required for implementation and/or the timeliness of meaningful feedback. Tennis Australia has nevertheless attempted to strategically deploy quantitative biomechanics analysis, often doubling as research opportunities, to facilitate a coach's understanding of specific parts of his/her athlete's technique. The organisation has also identified key research questions to improve the sport's understanding of technique, skill development and injury prevention, generally through the use of motion analysis systems like VICON. The current paper provides some examples of the genesis and outcomes of this research in specific relation to the tennis serve.

KEYWORDS: SKILL DEVELOPMENT, FEMALES, LOW BACK PAIN

EXAMPLE 1: Coaches often decompose the serve and practise it in its component parts to develop consistency in the placement of the toss and the racket's swing. Traditionally this has been borne out of the coaches' search for mechanical consistency in stroke production, despite contemporary skill acquisition pointing to variable movement patterns being considered functional facets of performance (Davids et al., 2001). The kinematics of the ball toss as part of the discrete serve skill as well as select racket kinematics in the decomposed swing were compared to the relevant aspects of the actual first serve skill. A 22 camera VICON MX motion analysis system, operating at 250 Hertz, captured these kinematics and paired t-tests assessed within-group differences. The mean height of the ball tossincreased significantly (~20cm) in the decomposed ball toss among the five elite junior players that participated in the study, while the temporal characteristics of the swing were affected when the skill was decomposed (Reid et al., 2010). The study questioned the use of this time-honoured intervention in development of the serve.

EXAMPLE 2: Little is known regarding the kinematics of the ball toss in the serve. Indeed the notion that players can serve to different parts of the court off the same toss represents a gold-standard yet untested ideal. As described in Reid et al. (2011), the first serves and second serves of 6 professionally ranked players, directed to T, body and wide target locations, were analysed using a 22 camera, 250Hz VICON MX motion analysis system. Racket, ball, foot and hand kinematics were captured and repeated measures ANOVAs assessed within-player differences. The findings, which illustrated that kinematics varied across the FS but were consistent in the SS, have implications for the development of the serve as well as visual search strategies on the return.

Table 1: Example 1 data.										
Variable		Flat Se	rve (FS)	Ball To						
Variable	Mean	S.D.	Mean	S.D.	p					
	Х	10.6	15.4	10.1	18.5	.824				
Hand position @ BR (cm)	у	17.5	18.8	13.8	17.7	.253				
	Z	145.9	8.6	146.5	5.8	.788				
	Х	-17.8	9.1	-8.0	13.1	.111				
Ball position @ BZ (cm)		39.6	11.1	35.3	13.1	.444				
		288.2	19.2	311.2	24.4	.004*				
St Dev of ball position @ BZ (cm)		5.5	1.2	7.8	2.4	.041				
		10.1	7.7	8.2	2.5	.648				
		5.1	1.8	9.0	3.4	.043				
Ball position @ impact (cm)		-34.0	9.5	-22.8	12.6	.189				
		51.8	8.5	40.8	16.0	.246				
	Z	250.9	9.3	250.8	9.31	.458				
Ball rotation during toss (deg/s)		837.0	343.0	927.0	333.0	.008*				
Toss duration (s)		0.80	0.08	0.89	0.12	.246				
Ball placement duration (s)		0.53	0.04	0.57	0.04	.015				
Timing of BZ as % of toss duration		66.0	1.71	61.8	1.43	.001*				
Timing of RHP after BR (s)		0.43	0.10	Correlation coefficien						
Timing of BZ after BR (s)		0.52 0.06 r= 0.861								

*significant (p<0.01) BR=Ball release; BZ=Ball zenith; RHP=Racket high point.

Table 2: Example 2 data.										
	Т		Bo	dy	W	_				
	Mean	S.D.	Mean	S.D.	Mean	S.D.	p			
First Serves										
Lateral front foot position (cm)	94.3^	9.9	98.8	12.7	103.0	16.18	0.02*			
Lateral zenith (cm)	1.5	6.4	-1.2	6.5	-4.3	9.3	0.04*			
Forward zenith (cm)	46.9	6.8	48.3	11.7	44.9	9.5	0.35			
Zenith (cm)	338.1	22.8	337.5	19.6	335.4	17.4	0.56			
Lateral ball disp. at impact (cm)	-12.2#	8.0	-14.5	4.6	-19.4	8.1	0.02*			
Forward ball disp. at impact (cm)	58.3	13.3	62.2	16.2	58.2	14.4	0.29			
Vertical ball disp. at impact (cm)	275.4	9.7	275.3	9.7	275.3	10.0	0.99			
Toss time (s)	1.01	0.16	0.97	0.10	0.96	0.08	0.32			
Racket velocity (m/s)	49.8	5.5	51.0	3.0	49.8	5.9	0.56			
Second Serves										
Lateral front foot position (cm)	95.5	9.6	100.3	9.5	101.3	13.4	0.14			
Lateral zenith (cm)	-14.1	10.1	-15.7	8.5	-15.9	9.9	0.50			
Forward zenith (cm)	38.0	12.9	36.8	12.9	36.4	12.5	0.70			
Zenith (cm)	333.4	20.1	339.0	18.7	337.4	19.8	0.23			
Lateral ball disp. at impact (cm)	-35.3	10.9	-39.9	7.3	-37.7	10.4	0.18			
Forward ball disp. at impact (cm)	46.9	18.4	42.3	17.8	44.6	18.0	0.66			
Vertical ball disp. at impact (cm)	273.0	10.3	272.4	9.7	273.7	11.1	0.71			
Toss time (s)	0.95	0.09	0.97	0.09	0.93	0.14	0.40			
Racket velocity (m/s)	47.3	5.0	47.8	5.1	47.5	5.8	0.85			

*significant main effects (p<0.05); significant post-hoc effects: ^ T vs B (p=0.028), T vs W (p=0.044); [#] T vs W (p=0.028)

EXAMPLE 3: Examinations of the mechanics of the serve in tennis have chiefly attended to the deliveries of adult, male players. The female and junior serves have received comparatively less attention. The aims of this undertaking were therefore to compare the first serve kinematics in elite pre-pubescent, pubescent and post-pubescent female tennis players (Whiteside et al., in review). Full body, racket and ball kinematics were derived using a 22 camera VICON MX motion capture system. Differences in racket velocity as well as in

the kinematics of the serving arm, the trunk and the lower limb joints were noted. From a temporal perspective, the characteristics of the pre-pubescent serve were also different to the serves of the two older groups. These factors point to the potential shortcomings of attempting to impose the kinematics of the elite adult female serve on the elite junior female serve and require due consideration in instruction of the stroke.

Table 3: Example 3 data.												
	Grou	р 1	1 Group 2 Group 3		p 3	ANG		Post-Hoc				
Variabla	Moon	60	Moon	6 D	Moon	60	F	<u> </u>		1	1	2
valiable	IVICALI	30	Wearr	30	Wear	30	F	ρ		2	3	vs 3
Lower Limbs												
Peak Front Knee	75	10	65	7	60	o	2 0 2 7	024				
Flexion Angle (°)	75	10	05	1	09	0	3.021	.034				
Peak Back Knee	87	10	87	8	88	8	025	975				
Flexion Angle (°)	01		0.	U		Ū						
Sum of Front	1101	100	1007	044	1000	104	10 202	000	*		*	*
Ankie/Knee/Hip ω	1164	120	1307	241	1000	134	19.382	.000				
(75) Sum of Back												
Ankle/Knee/Hin ω	1466	177	1596	191	1795	198	7 4 1 2	003	*		*	
(°/s)	1100		1000	101	1100	100		.000				
Peak Front Hip												
Vertical Velocity	1.37	.19	1.47	.11	1.73	.12	14.566	.002	*		*	*
(m/s)												
Peak Back Hip												
Vertical Velocity	1.81	.25	1.94	.09	2.30	.11	19.310	.001	*		*	*
(m/s)												
Peak Separation	-30	7	-25	6	-17	11	6.144	.006	*		*	
Aligie () Peak Trunk Tilt												
Angle (°)	37	12	42	7	43	7	1.069	.357				
Peak Trunk Twist ω			074		40.4		4 9 4 5					
(°/s)	4/1	83	371	47	431	112	4.345	.023				
Peak Shoulder-												
Over-Shoulder ω	-635	46	-662	26	-700	55	5.528	.009	*		*	
(°/s)												
Pelvis Alignment at	94	10	79	10	75	6	12.486	.000	*	*	*	
Shoulder Alignment												
at Impact (°)	108	11	98	10	87	7	11.925	.000	*		*	
Trunk Tilt at Imp (°)	-25	7	-39	8	-40	6	15.643	.000	*	*	*	
Serving Arm		•		•		·						
Peak External				-		_						
Rotation Angle (°)	-129	12	-136	9	-141	7	3.468	.045				
Peak Internal	1000	265	0165	272	2000	207	10 0 1 2	000	*	*	*	
Rotation ω (°/s)	1200	305	2100	313	2000	297	19.045	.000				
Peak Elbow	-1147	185	-1592	191	-1524	144	20 533	000	*	*	*	
Extension ω (°/s)	1117	100	1002	101	1021		20.000	.000				
Peak Wrist Flexion	1164	189	1581	184	1911	264	31.875	.000	*	*	*	*
ω (75) Shoulder Abduction												
Angle at Impact (°)	95	13	102	10	104	13	1.495	.242				
Elbow Flexion Anale	40		00		07	0	0.574	004	*	+	÷	
at Impact (°)	42	11	26	11	27	8	8.574	.001		*	•	

Temporal											
Preparation as	40	10	50	10	60	7	0.051	001	*	*	*
(%)	42	10	20	12	60	1	9.851	.001			
Propulsion as				10	~-	_					
(%)	42	10	29	12	27	7	8.159	.003	*	*	×
Forwardswing as	0		-		•	0	0 500	445			
(%)	8	4	5	1	6	2	2.596	.115			
Time Margin: TP to BZ (s)	.17	.10	.07	.05	.03	.02	11.277	.000	*	*	*
Racket											
Racket Backward Tilt at Impact (°)	15	3	10	2	9	3	11.098	.000	*	*	*
Racket Velocity at	_1	2	Λ	З	З	2	11 502	000	*	*	*
Impact: X (m/s)	-1	2	-	5	5	2	11.002	.000			
Racket Velocity at Impact: Y (m/s)	29	3	40	3	43	3	65.183	.000	*	*	*
Racket Velocity at	4	1	4	2	5	3	133	876			
Impact: Z (m/s)	•		•	-	U	Ũ		.070			
Absolute Racket	20	2	11	2	10	2	72 176	000	*	*	*
(m/s)	30	3	41	3	43	3	73.170	.000			
Ball											
Ball Position at BZ: X (cm)	3	14	1	11	-3	13	.468	.631			
Ball Position at BZ: Y cm)	38	8	51	8	49	4	10.761	.000	*	*	*
Ball Position at BZ: Z cm)	311	25	330	17	336	16	4.289	.024			
Ball Position at	-9	18	-8	12	-14	16	.443	.646			
Ball Position at	40			•		_	0.704	004	-14		
Impact: Y cm)	48	11	63	8	61	5	9.721	.001	*	×	*
Ball Position at	21/	8	248	٥	254	7	74 740	000	*	*	*
Impact: Z cm)	217	0	270	5	207	ı	14.140	.000			
Ball Rotation (°/s)	3199	2045	7185	2532	6359	1746	10.706	.000	*	*	*
Ball Spin Axis: Elevation Angle (°)	47	17	73	8	70	5	.188	.000	*	*	*

REFERENCES:

Chow, J., Carlton, L., Lim, Y., Chae, W., Shim, J., Kuenster, A., et al. (2003). Comparing the pre- and post-impact ball and racquet kinematics of elite tennis players' first and second serves: a preliminary study. *Journal of Sports Sci*ences, *21* (7), 529-537.

Davids, K., Kingsbury, D., Bennett, S., & Handford, C. (2001). Information-movement coupling: Implications for the organization of research and practice during acquisition of self-paced extrinsic timing skills. *Journal of Sports Sci*ences , *19*, 117-127.

Reid, M., Whiteside, D., & Elliott, B. (2010). Effect of skill decomposition on racket and ball kinematics of the elite junior tennis serve. *Sports Biomechanics, 9*(4), 296-303.Reid, M., Whiteside, D., & Elliott, B. (2011). Serving to different locations: set-up, toss, and racket kinematics of the professional tennis serve. *Sports Biomechanics, 10*(4), 407-414.

Savelsbergh, G., & van der Kamp, J. (2000). Information in learning to co-ordinate and control movements: Is there a need for specificity of practice? *International Journal of Sports Psychology, 31* (4), 467-484.

Whiteside, D., Elliott, B., Lay, B., & Reid, M. In review. The effect of age on discrete kinematics of the elite female tennis serve. Submitted to Scandanavian Journal of Medicine and Science in Sports.