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This study aimed to investigate the importance of wrist flexion and trunk rotation relative 
to the pelvis about a vertical axis (X-factor) in the golf swing, through the use of kinematic 
simulation. Empirical data of 5 highly skilled golfers were collected using a 3D opto-
reflective system. A full body, 3D forward kinematic model was created that predicted the 
endpoint of the club to within 0.02 mm of the empirical data. X-factor rotation, then flexion 
of the wrist was locked at zero degrees throughout the downswing, with the effect on the 
kinematics of the club-head analysed. The results indicated that effective extension/ 
flexion at the wrist is of great importance to performance with an average reduction of 
club-head velocity at impact of 46%, when wrist flexion is restricted during the 
downswing. Effective rotation of the trunk was also important to performance variables.   
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INTRODUCTION: The velocity, orientation and path of the club-head when impacting the 
ball, will dictate the outcome of any golf drive (Hay, 1993).  Optimising these variables is a 
result of the coordination of a great number of segments throughout the golfer’s body.  
Understanding the influence of specific segmental kinematics in the swing, therefore, is vital 
for coaches in enabling golfers to achieve their optimal performance.  To this end, previous 
research has identified some kinematic differences in the swings of golfers of different skill 
levels.  For example, a number of papers have identified the magnitude and velocity of trunk 
rotation relative to the pelvis (or X-factor) as a key difference between high and low 
handicappers (Cheetham et al., 2000; Egret et al., 2004; Myers et al., 2008).  Additionally the 
timing and velocity of rotation about the wrists has been highlighted to be different between 
players who are highly skilled, and those who are of poor skill (Nozawa & Kaneko, 2003; 
McLaughlin and Best, 1994).    
While previous observational case-control and cross-sectional studies have provided an 
understanding of kinematic differences between golfers of varying skill levels they have 
limited potential for identifying and quantifying causal relationships between kinematics in the 
golf swing.  Additionally correlational and regression based analyses are also inadequate in 
identifying causal relationships between kinematic variables, as they are based on 
assumptions of linearity between variables. 
An alternative is to simulate a specific change to the swing using a forward dynamic 
approach.  Research of this nature has revealed some important information regarding 
optimal performance of the swing (Chen et at., 2007; Sprigings & Neal, 2000). However, this 
approach has generally suffered from the limitations of operating in 2D, with a limited number 
of segments.  Additionally there is paucity in understanding the role kinematics play,, as it is 
kinematics that coaches use most commonly (quantitatively and qualitatively) to assess a 
swing.   
The aim of the current study is to assess the influence of restricting X-factor rotation and 
wrist flexion/extension, on the orientation and velocity of the club-head during the downswing 
phase of the golf drive. 
 
METHODS: Five highly skilled male golfers were recruited for the study, possessing an 
average handicap, height and mass of 3.6 (±4.9), 1.77 m (±0.08) and 75.2kg (±9.7) 
respectively.  After providing written consent and performing a 5 minute warm up, each 
participant hit 4 drives, into a net situated 5 m in front of them.  Participants were asked to 
use their natural technique that they would employ for a straight drive on the golf course.   

Differences between the techniques used are likely a result of the changes in technique 
when processing JH, because the same jumps were used for comparison. 
Problems may arise, however, from calculating CT and JH from video data due to the 
decrease in sampling rate from force platforms to cameras (in the case of the equipment 
used for the current study, from 1000Hz to 60Hz). This decrease will result in the loss of data 
and therefore accuracy, but may be alleviated by using cameras with higher sampling rates. 
 
CONCLUSION: The differences in technique used to calculate JH, and by extension, RSI, 
produce large enough of effects that care must be taken when comparing plyometrics 
performance in and out of water. The changes in FT due to buoyancy and water drag impact 
traditional calculations of JH when only using FT data. As such, when comparing 
performance in and out of water, JH derived from video analysis can possibly result in more 
accurate outcomes, as long as level of plantar flexion is taken into effect and measures are 
taken to increase sampling rate. While differences in technique have an effect in comparing 
padded and unpadded conditions, that effect is much smaller. Overall, plyometrics in water 
increases the complexity of data analysis by possibly creating flaws in results derived from 
FT calculations. Video analysis may alleviate these issues, but introduce complexities that 
must also be taken into account. 
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RESULTS: With respect to the predicting the club-face centre position in the global 
coordinate system, the maximum resultant error of the FKM was 0.02 mm across all time 
points of all trials analysed, with an average RMS Error of 0.0014 mm.  In predicting club-
head velocity and loft angle the average FKM also had an average RMS of under 0.001 ms-1 
and 0.001º respectively.     
Club-head resultant velocity and loft angle during the downswing from the empirical data, 
FKM and both altered conditions can be seen in Figure 2.  Club-head velocity and orientation 
in both altered conditions were markedly different to the original FKM data, with the patterns 
seen in Figure 2 being consistent across all participants. Both restricting the X-factor rotation 
and the wrist flexion/extension resulted in slightly higher club-head velocities at different 
stages during the downswing, however both caused a significantly (p<0.05) decreased club-
head velocity at impact (Table 1).  Further, it was apparent that this decrease at impact was 
much greater in the condition restricting the wrist flexion/extension.  A significantly more 
lofted angle of the club-head also resulted from both altered conditions, when compared with 
the empirical data.  

   
Figure 2: A representative trial showing A) resultant club-head velocity and B) club-head loft 
angle, for each condition, across four trials. 
 
 

Table 1 
Average club-head velocity (ms-1) and loft angle (◦) across all three conditions 

 
 Original FKM No Trunk Twist No Wrist Flex/Ext 
Resultant Club-Head Velocity 47.7 43.6* 25.8** 
Club-Head Loft Angle 6.8 17.6** 20.2** 
* sig <0.05, ** sig <0.01 

    
DISCUSSION: The FKM predicted all kinematics of the club-head highly accurately and 
therefore can be considered a valid tool for simulating the endpoint of the chain based on the 
kinematics of the previous segments.   
Resultant velocity of the club-head has often been used as an indicator of performance in the 
golf drive, as it plays a large role on allowing a player to achieve maximum distance (Hay, 
1993).  The results indicate that restricting movement at either the trunk or wrist will result in 
a significant decrease in club-head velocity late in the downswing, and therefore a 
diminished performance.  While the decrease in club-head velocity observed with restricted 
rotation of the X-factor may be considered somewhat minor (9% of empirical club-head 
velocity), the decrease caused by restricting the flexion/extension of the wrist during the 
downswing (46% of empirical club-head velocity) suggests that movement in this single 
degree of freedom is responsible for generating a large portion of club-head velocity at 
impact.  These findings would seems to support previous 2D simulation studies that have 
highlighted the effect that timing and magnitude of kinetics at the wrist joint can play in the 
golf swing (Chen et at., 2007; Sprigings & Neal, 2000).  Furthermore the research indicates 
that players not achieving adequate ‘wrist cock angle’ or perhaps ‘releasing’ this angle too 
early will likely hit the ball dramatically shorter.   

A) B) 

Each swing was recorded using a 12 camera Vicon (Oxford, UK) MX system operating at 
400 Hz.  Seventy-seven retro reflective markers, of 16 mm diameter, were affixed to the 
participant and club during the calibration procedure.  Twenty eight of these markers 
identified key anatomical landmarks required for the definition of segment anatomical 
coordinate systems (ACSs).  The rest of the markers, inclusive of 12 semi-rigid ‘T-bar’ 
clusters, were used to define technical coordinate systems (TCSs) that represented the 
movement of each segment.  A pointer method (Cappozzo et al., 1995) was used to identify 
the 3D position of lateral and medial epicondyles for both elbows, as well lateral and medial 
femoral condyles at each knee.  The locations of these landmarks were held in the TCSs 
from the upper arm and thigh respectively.   The same method allowed the creation of a club-
face ACS from three markers affixed to the top of the club-head (Sweeney et al., 2009). 

Figure 1: Full body retro-reflective marker set from A) anterior view, B) posterior view and of
the C) golf club-head. 

A Forward Kinematic Model (FKM) was developed to allow the calculation of club-head 
position and orientation, given the position and orientation of the initial segment, as well as 
the subsequent segment angles and joint positions (relative to ACSs) for the rest of the 
kinematic chain.  The FKM consisted of 36 Degrees of Freedom (DOF), from the 11 
segments defined as a part of the original kinematic data.  The general equation was: 
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Where GPCF was the position of the centre of the club-face in the global coordinate system, 
GP1 was the position of the left foot (initial segment), G

iRzyx (,,) was the rotation matrix 
defining the orientation of segment i, which was composed via sequential rotations about the 
z-, x- and y-axes of segment i by the angles ,, (corresponding to the medio-lateral, 
anterior-posterior and vertical axis) and iPi was the position of the endpoint of segment i
defined within segment i’s ACS.
Validation of the FKM was performed by evaluating club-face position, orientation (club-head 
loft) and resultant velocity produced by the FKM in comparison to the empirical data.  Using 
the FKM, two altered conditions were then imposed for each trial collected across all 
participants, to assess the effect of restricting X-factor rotation and wrist flexion/extension.  
The former was achieved by replacing the X-factor angle with a zero value for the entire 
downswing, whilst keeping the kinematics across the other 35 degrees of freedom the same 
as the empirical data.  The same process was repeated for the second altered condition, this 
time with the flexion/extension of the wrist set to zero.  Dependent samples t-tests (p<.05)
were used to assess whether either experimental condition produced significantly different 
club-head loft angle and/or resultant velocity to the original FKM data at impact. 

A) B) C)
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Whilst orientation of the club-head at impact has been reported as a key to performance in 
the swing (Hay, 1993), there has been a paucity of research linking it to any kinematics of the 
golfer.  The results of this study would indicate that the kinematics at the trunk and wrist both 
play a role in dictating the orientation of the club at impact.  Restriction of these two 
movements both resulted in the club-head having a significantly greater loft angle at impact.  
A loft angle too high at impact will logically result in an overly steep launch angle and/or too 
much backspin on the ball, leading to decreased distance and perhaps accuracy.  It seems 
important for both distance and accuracy, therefore, that golfers are able to freely rotate their 
trunk and wrists during a high performance golf drive 
While the results of the current study provide valuable information with regard to the role of 
two key kinematic variables in the swing, further research is needed encompassing a greater 
number of participants and a more diverse spread of skill levels.   
 
CONCLUSION: A novel technique for simulating the kinematics of the swing has been 
presented in this study, highlighting the importance of both rotation of the trunk and the 
flexion/extension of the wrists in achieving optimal distance and accuracy.  The results 
indicated that X-factor rotation of the trunk may play a significant but somewhat minor role in 
creating velocity of the club-head, as well as allowing the club-head to be orientated 
optimally at impact.  However, extension then flexion at the wrists appears to play an even 
greater role in the creation of club-head velocity and optimal club-head orientation at impact.  
To maximise performance in the golf drive, therefore, coaches should ensure players get the 
most out of their shoulder turn and, in particular, the extension followed by flexion of their 
wrists.    
 
REFERENCES: 
Cappozzo, A., Catani, F., Croce, U. D. & Leardini, A. (1995). Position and orientation in space of 
bones during movement: anatomical frame definition and determination. Clinical Biomechanics, 10(4), 
171-178. 
Cheetham, P.J., Martin, P.E., Mottram, R.E. & St. Laurent, B.S. (2000) The importance of stretching 
the X Factor in the golf downswing. 2000 Pre-Olympic Congress. International Congress on Sport 
Science Sports Medicine and Physical Education. Brisbane, 7-12. 
Chen, C., Inoue, Y., and Shibara, K. (2007) Numerical study on the wrist action during the golf 
downswing. Sports Engineering, 10, 23-31. 
Egret, C., Dujardin, J., Weber, J., and Chollet, D. (2004) 3-D kinematic analysis of the golf swings of 
expert and experienced golfers.  Journal of Human Movement Studies, 47, 193-204. 
Hay, J. (1993) The Biomechanics of Sports Techniques. Englewood Cliffs, N.J.. Prentice-Hall   
McLaughlin, P., & Best, R. (1994) Three-dimensional kinematic analysis of the golf swing. Science 
and Golf II. Proceedings of the 1994 World Scientific Congress of Golf, St Andrews, 91-6 
Myers, J., Lephart, S., Tsai, Y., Sell, T., Smoliga, J. & Jolly, J. (2008) The role of upper torso and 
pelvis rotation in driving performance during the golf swing. Journal of Sports Sciences, 26(2), 181-
188. 
Nozawa, M., and Kaneko, M. (2003) General characteristics of swing motion in professional and 
amateur female golfers. International Society of Biomechanics XIXth congress: The Human Body in 
Motion, Dunedin, 300-2. 
Sprigings, E., & Neal, R. (2000) An insight into the importance of wrist torque in driving the golfball: a 
simulation study. Journal of Applied Biomechanics, 16(4), 356-66. 
Sweeney, M., Alderson, J., Mills, P., & Elliott, B. (2009)  Timing of peak club-head velocity in the golf 
drive without the effect of impact. Proceedings on the 7th Australasian Biomechanics Conference. 
Gold Coast, 80. 
 

Acknowledgement 
The researchers would like to thank Titleist for their support of the research. 




