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The purpose of the present study was to compare two different methodologies for passive 
drag evaluation considering two different swimming glide positions used in the 
breaststroke event: a prone position with flexed shoulders and arms extended above the 
head, and a prone position with arms extended along the trunk. Experimentally the 
passive drag was assessed by Inverse Dynamics from swim meter data, and numerical 
simulation by the Computational Fluid Dynamics. Similar drag and drag coefficient values 
were found for the first glide position with the two methods; however, for the second glide 
position, the drag and drag coefficients were higher using Computational Fluid Dynamic 
when compared with Inverse Dynamics for the same velocities.  
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INTRODUCTION: Swimming performance is determined by the combined effect of 
propulsion, drag and technical skill (Chatard et al. 1990). Passive drag, it can be considered 
as a relevant predictor of gliding performance during the underwater phases of the starts and 
turns, which are important components of the overall swimming event (D’Acquisto et al., 
1988). Lyttle et al. (1998) found the reduction of the hydrodynamic drag during the glide 
leads to reduced turning times. Cossor and Mason (2001) suggested that rather than the 
start technique, it is the swimmer’s position underwater that mostly determines the success 
of a start. 
The most common method used to study the passive drag acting in human swimming is by 
towing subjects - at various velocities, body positions and depths - using electro-mechanical 
motors or weights and pulley systems ( e.g. Counsilman, 1955; Clarys et al., 1990; 
Kolmogorov et al., 1997; Lyttle et al., 2000; Toussaint, 2004). However, other methods are 
being used, like the Inverse Dynamics (Vilas-Boas et al, 2010; Costa et al, 2010) and 
Computational Fluid Dynamic (CFD) (Bixler et al., 2007, Zaidi et al., 2002, Marinho et al., 
2009). The CFD method is a numerical modelling technique that can be applied to 
hydrodynamic phenomena, and may be used as an alternative approach to the experimental 
research regarding the determination of a swimmer’s passive drag.  
In this context, the aim of the present study was to compare experimental and numerical 
hydrodynamic data, particularly drag (D) and Drag Coefficient (CD), obtained in the first and 
second gliding positions of the breaststroke underwater stroke used after starts and turns in 
breaststroke events. These data were obtained for the total range of common velocities 
available for each glide. 
 
METHODS: For this purpose, inverse dynamics and CFD were used to obtain D and CD for 
each glide positions. Six National level male swimmers voluntaries participated in this study. 
Planimetry was used to obtain the swimmer’s body cross sectional area (S), as described by 
Vilas-Boas et al. (2010). Experimentally, the D and CD were assessed through inverse 

of elite male swimmers so further research will investigate the trends with a larger subject 
group. 
 
CONCLUSION: The outcomes of this study show that simple jump tests measured on land 
do relate to swimming start performance and can be used by swimmers and coaches. 
Equipment used for the jumps on land was portable and would allow for testing to occur in a 
variety of locations including the poolside. Due to the ease of testing, these types of jumps 
could occur more frequently than testing with the inclusion of an instrumented starting block 
and at a fraction of the price. The jump height tests indicate that there may be a preference 
towards swimmers having the left leg at the front of the starting block but with the numbers 
quite small in the current study, this needs to be investigated further before conclusions can 
be made. 
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dynamics (for a more detailed description cf. Vilas-Boas et al., 2010), based upon the 
velocity to time curve of each glide, which were obtained by a swim-meter developed by 
Lima et al. (2006). From the curves of all swimmers, the common velocities for each pair of 
glide positions were determined and the D and CD values were computed.  
A real swimmer’s 3D model, representative of the two gliding positions (figure 1), was used in 
computational simulations. The numerical simulation of the fluid flow around the 3D model of 
the swimmer was implemented with the CFD software FLUENT, applying the finite volume 
method. In the present study, the simulation was carried out on the meshed model consisting 
of 1 million of tetrahedral cells, with a uniform velocity equal to 1.00, 1.39 and 2.00 m/s. To 
compare the two methodologies (inverse dynamics and CFD) the D and CD were interpolated 
for the velocities found experimentally: first glide v=1.3; 1.39; 1.5; 1.6; 1.7 and 1.8m/s and 
second glide v=1.0; 1.1; 1.2; 1.3; 1.39; 1.5m/s.  

     (a)                                               (b) 
Figure 1: Body position adopted by swimmers in first glide (a) and second glide (b) in 
breaststroke underwater stroke. 

RESULTS: In the first glide position we found very similar D values assessed by Inverse 
Dynamics (D=33±7.96N to 58±12.73N) in comparison with D values assessed by CFD 
(D=29N to 52N). Similar CD values were also obtained in both methods: Inverse Dynamics 
(CD=0.52±0.04 to 0.46±0.09) and CFD (CD=0.43 to 0.41), for velocities between 1.3m/s and
1.8 m/s In the second glide position we found significantly higher D and CD values for CFD (D 
from 31N to 72N and CD from 0.82 to 0.86)  in comparison with values obtained through 
inverse dynamics (D from 26±9.83N to 44±6.97N and CD from 0.69 to 0.47) for velocities 
between 1.0m/s and 1.5 m/s, respectively.

DISCUSSION: In a review of Clarys (1979), several authors have showed that Passive Drag 
depends on the body position and the head position. Our 3D model used in the CFD 
simulations did not assume elevated shoulders while in the experimental setup the swimmers 
adopted it. Being this position (second glide) considered as more resistive than the first one, 
with various pressure points, especially at the head and shoulders (Marinho et al., 2009,
Vilas-Boas et al, 2010 and Costa et al., 2010), naturally the proper geometry of these points 
is essential to be considered in the simulations. The model 3D was obtained with a full body 
scan being the feet swimmer’s in plantar flexed and the arms were not totally attached along 
the trunk. We believe that the differences found in the second glide position were caused by 
the differences between the real body shape assumed by swimmers and the body shape of 
the model. 

CONCLUSION: Future CFD research in this area should consider different head and 
shoulder position, particularly in the second gliding position. The present work is an approach 
to the validation of CFD simulations, which showed very good agreement with experimental 
results for the first gliding position, and understandable differences for the second one.
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