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Determining the efficiency (and the economy) of a movement is a primary goal for those
interested in understanding, and possibly improving, human locomotion and/or sport’s
performance. This goal is particularly difficult to achieve in swimming where different
“efficiencies” could be computed based on the partitioning of mechanical power output
into its useful and non useful components as well as because of the difficulties in
measuring the forces a swimmer can exert in water. In this paper the “possible range” of
overall (gross) and propelling efficiency values for swimming humans is estimated and
discussed.
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INTRODUCTION: The only efficiency that can be calculated in swimming with a certain
degree of accuracy is drag efficiency (np) for it just requires measures of drag (hydrodynamic
resistance) and energy expenditure: np = W’p / E’, where W'p is the mechanical power output
needed to overcome drag forces and E’ is metabolic power input. Even if the different
methods developed so far to determine (active and/or passive) drag are quite debated in the
literature (e. g. Wilson & Thorp, 2003; Toussaint, Roos & Kolmogorov, 2004; Havriluk, 2007;
Zamparo, Gatta, Capelli & Pendergast, 2009; Zamparo, Capelli & Pendergast, 2011), they
consistently indicate that less than 10% of metabolic power input can be transformed into
useful mechanical power output (np = 0.03-0.09) (e. g. Holmér, 1972; Pendergast, di
Prampero, Craig Jr, Wilson & Rennie, 1977; Kolmogorov & Duplisheva, 1992; Toussaint,
Roos & Kolmogorov, 2004; Zamparo, Pendergast, Mollendorf, Termin & Minetti, 2005).

Even more debated are the methods utilized in the literature to calculate overall (gross) and
propelling efficiency and the range of their values is even larger than in the case of np. The
values of np (= W'/ E’, where W’ is total mechanical power output) reported in the literature
range from 0.1 to 0.2 (Toussaint, Knops, De Groot & Hollander, 1990; Zamparo et al., 2005)
and the values of np (Wp / W’r) range from 0.2 to 0.8 (Martin, Yeater & White, 1981;
Toussaint, Beleen, Rodenburg, Sargeant, De Groot, Hollander & van Ingen Schenau, 1988;
Zamparo et al., 2005; Zamparo, 2006; Figueiredo, Zamparo, Sousa, Vilas-Boas &
Fernandes, 2011). Particularly for np the need to decrease the uncertainty due to the wide
range of values reported in the literature is strong since this parameter is a major
determinant of performance and hence of great interest for sport scientist and coaches.

METHODS AND RESULTS: Propelling efficiency can be calculated based on values of drag
efficiency provided that overall (gross) efficiency is known (no = npo/me). As indicated in Table
1, by assuming different values of no (from 0.10 to 0.30) the possible range of estimated np
values turns out to be “rather wide” (0.10-0.90) indicating that from 10 to 90% of W’r can be
utilized for propulsion during swimming. One way to reduce this uncertainty is to define a
“reasonable range” of np values, at least from a theoretical point of view.

DISCUSSION: In cycling, where W'; is easily measurable with proper ergometers: no = 0.25-
0.30 (e. g. similar to the values expected from the thermodynamics of muscle contraction at
optimal contraction speed, Wooledge, Curtin & Homsher, 1985). Similar values should be
expected for all forms of “locomotion” in which no recoil of elastic energy takes place and for
which total power output can be accurately assessed; in these conditions, values of o lower
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than 0.25-0.30 are measured only when muscles are working far from the optimal range of
their force-length and/or force-speed relationship.

Table 1
Changes in propelling efficiency (np) estimates for different values of overall
efficiency (no) and of drag efficiency (np). no = No/Mp-

No Mo (min) Mo (Max) Mp (min) Ne (Max)
0.10 0.03 0.09 0.30 0.90
0.15 0.03 0.09 0.20 0.60
0.20 0.03 0.09 0.15 0.45
0.25 0.03 0.09 0.12 0.36
0.30 0.03 0.09 0.10 0.30

The effect of an “unfavourable muscle length” on 1o is quite small: when cycling in the prone
or supine position the efficiency is 92 - 97% that of cycling upright (Abbott & Wilson, 1995).
Muscle efficiency is also a function of the v/vn. ratio (velocity of shortening / maximal
velocity of shortening) and peaks at about the same shortening speed that gives maximal
power production (e. g. Reggiani, Potme, Bottinelli, Canepari, Pellegrino & Stiener, 1997).
Since muscle fibre types are characterized by different values of vmax, muscle efficiency
depends also on the composition of fibres (the slow type fibres being more efficient that the
fast type ones) and on their recruitment (e. g. Reggiani et al. 1997). 60 cycles /min (1 Hz)
has been suggested as the frequency maximizing efficiency for Type | fibres in cycling
(Sargeant & Jones 1995) and arm stroke frequency is not far from this value (34-67
cycles/min: in the four strokes over the 50-800 m distances, in male and female swimmers,
as reported by Maglischo, 2003). Therefore, the effect of an “unfavourable contraction
speed”, as well as that of an “unfavourable muscle length” on 1o in swimming seems rather
small.

A final consideration, debated in the literature, regards the possible difference in the
efficiency of arm vs. leg exercise: due to the smaller mass involved (arm cranking vs. cycling)
the “overall” efficiency of arm exercise was reported to be lower to that of leg exercise (e. g.
Pendergast, 1989). However, this is not the case of swimming since large muscle masses
(not only the upper limbs) are involved in this mode of locomotion. Moreover, as indicated by
Hagerman (2000), the values of no reported in the literature for rowing (mainly, but not only,
upper body exercise) can be as high as 0.24 (in elite oarsman during a simulated 2000 m
race on a rowing ergometer).

On the basis of these considerations it could be concluded that: i) no values of about 0.20-
0.25 could be determined also for “simulated swimming” if a proper ergometer could be
devised; and ii) the “rather low” values of overall (gross) swimming efficiency reported in the
literature so far can not be attributed to non-optimal muscle efficiency during swimming but,
rather, to an incomplete computation of all work components/energy losses.

On this line of reasoning, according to data reported in Table 1, it necessarily follows that, for
No values of about 0.20-0.25, np could be at most 0.36-0.45 (and the minimum values of
about 0.12-0.15): e. g. less than half of total power output can be transformed into power
useful for propulsion in swimming humans. These seem quite reasonable estimates since
humans are not suited for locomotion in water; in comparison swimming cetaceans are
characterized by values of np ranging from 0.75 to 0.90 (Fish 1998). Recent studies of
computational fluid dynamics (von Loebbecke, Mittal, Fish & Mark, 2009) are even more
“restrictive” indicating a range of propulsive efficiency of the underwater dolphin kick in
humans (a way more efficient method to move in water than the arm stroke) of 0.11 - 0.29
(compared to 0.56 for cetaceans).

ISBS 2011 66 Porto, Portugal



Veloso, Alves, Fernandes, Conceicéo, Vilas-Boas (eds.) Portuguese Journal of Sport Sciences
Applied Biomechanics in Sports 11 (Suppl. 3), 2011

FINAL CONSIDERATIONS: Data of n, reported in Table 1 represent the “average propelling
efficiency” as it can be calculated during a complete swimming cycle. Since unsteady forces
are exerted in swimming, when this parameter is calculated in a particular phase of the
swimming cycle (e. g. during the propulsive phase) its values could be as much as twice than
the average ones. This seems indeed one of the reasons why so different values of
propelling efficiency of the arm stroke have been reported in the literature so far.
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