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THE EVOLUTION OF POSE ESTIMATION ALGORITHMS FOR 3D MOTION CAPTURE 
DATA: COPING WITH UNCERTAINTY

At the heart of many biomechanical analyses is the estimation of the pose (position and 
orientation) of a multi-segment model based on recording of 3D motion data. The 
principle assumption of most pose estimation algorithms is that sensors move rigidly wit
the body segments to which they are attached. It is accepted, however, that sensors 
attached to the skin move relative to the underlying skeleton and that this 
Soft Tissue Artifact (STA) is challenging to model. 
discriminative algorithms that are ill
based on probabilistic inference may mitigate 
knowledge about the pose probabilistically, and 
model. 
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Discriminative Pose Estimation 
Our nomenclature for the three discriminative algorithms is derived from (Lu & O’Connor, 
1999). Direct Pose Estimation computes the SCS of each segment in a motion trial at each 
frame without assuming rigid segments, allowing the expected distribution of the markers 
and the segment length to change during movement. Thus, it is not possible to declare the 
number of degrees of freedom of a model, except instantaneously. There is no redundancy 
in the markers and there is no leniency in marker placement. If there is an error in the 
location of a marker, it will result in a direct error in the estimation of the SCS. Thus direct 
pose estimation is the least effective pose estimation algorithm. 
For conciseness, we will present the Segment Optimization and Global Optimization pose 
estimations in a statistical framework. A point  attached rigidly to a segment, has a location 
represented by a static vector  in a Segment Coordinate System (SCS) and by a dynamic 
vector   in a Laboratory Coordinate System (LCS). For a single segment with markers 
 = 1,2, ⋯ ,  the relationship between  and  is: 
   = R +         (1) 
 where 
   R = rotation matrix from SCS to LCS  = translation vector from SCS to LCS. 
This can be generalized to a relationship between recorded data  and pose  of an entire 
model: 
   = ,         (2) 

where for N markers:  
   = , , ⋯ ,  the recorded marker data in the LCS,  = , , ⋯ ,  the locations of the markers in the corresponding SCSs 

and, for M generalized coordinates:  = , , ⋯ ,  represents the degrees of freedom in the model. 
If we assume that all error ∈  in the data  is from noise, and is normal and independent, the 
generative model may take the form of the conditional probability distribution: 
  |, ~, ; Σ      (3) 

where , ; Σ   is the multivariate normal distribution with a mean of ,    and a covariance matrix Σ  of the sensor noise ∈  
Equation 3 is read as the probability of seeing data   given the state of the model  and .  
Expressing the distribution function explicitly: 

  |,  = 
  ,,   (4) 

and taking the negative log of this distribution function we get, 

− log |,  =  +   − ,  Σ  − ,  (5) 

In the deterministic algorithms the noise in one measurement is taken to be independent of 
all other measurements (thus Σ = ). For a deterministic solution we can reduce equation 5 to 
an Error function , which is minimized with respect to  at each frame of data.  

  ,  =  − ,   − ,     (6) 

In the simplest case of Segment Optimization, some of the elements of the vector  form a 
rotation matrix, so the problem is a constrained minimization problem, which can be solved 
using Lagrangian multipliers (Spoor & Veldpaus, 1980). This least squares solution can be 
considered a pattern recognition algorithm; the configured pattern of the tracking markers in 
each LCS is specified in a standing trial, and this pattern is fit to the homologous marker 

configuration in each frame of motion capture data. The Segment Optimization approach to 
pose estimation is useful because it is straightforward and the solution has no local minima. 
Segment Optimization methods treat segments as independent (6 DOF), but links them 
implicitly by the motion capture data i.e. segments do not come apart because the subject 
does not come apart). Movement at a joint may be real (e.g. the knee joint axis is not) or may 
be caused by noise. Segment Optimization places no restrictions on marker placement, 
which allows exploration of marker placements that reduce STA (Cappozzo et al., 1997) or 
the number of markers on a segment (in an over specified system N>3, if noise and/or STA 
is uncorrelated, the computed pose will act to minimize the effects of the noise). 
Lu & O’Connor (1999) introduced Global Optimization where physically realistic joint 
constraints are added to a model to minimize the effect of STA and measurement error. 
Global Optimization is dependent explicitly on the specification of a hierarchical model 
because the task is to identify an articulated figure consisting of a set of rigid segments 
connected with joints. Global Optimization is the search for an optimal pose of a multi-link 
model for each data frame such that the overall differences between the measured and 
model-determined marker coordinates are minimized in a least squares sense across all the 
body segments. It considers measurement error distributions in the system and provides an 
error compensation mechanism between body segments which can be regarded as optimal 
at the system level. For Global Optimization ,  is considerably more complex than for 
Segment Optimization, and more importantly, it is not possible to determine generally if the 
marker data are sufficient to compute a unique pose for the model, but it is beyond our page 
limitations to elaborate. Global Optimization is an extension to segment optimization because 
if all joints have six degrees of freedom, Global Optimization and Segment Optimization are 
equivalent. 
As reported by Cereatti, Della Croce & Cappozzo (2006) there have been several attempts to 
modify optimization methods to minimize STA, but none of the approaches have been 
satisfactory because discriminative models have no mechanism to compute a compensation 
for systematic but idiosyncratic errors even when the presence of the STA can be modeled.

Probabilistic Pose Estimation 
Todorov (2007) proposed that pose estimation from noisy motion capture data is better 
tackled by assuming uncertainty in the data and using well-established probabilistic 
algorithms based on Bayesian inference. Bayesian statistics is particularly well-suited for 
dealing with uncertain data because it provides a framework for making optimal inferences 
from uncertain information (Figure 2). For those of us who have always used discriminative 
models the probabilistic approach requires a conceptual leap because it seems to turn the 
problem on its head. The solution to the pose of the model given a set of data is oddly 
enough, not to solve for the pose directly (as in the discriminative model), but to solve for the 
possible data sets that are consistent with the pose in the context of a predicted pose; i.e. we 
must specify how we assume the data were produced. 
The Bayesian formulation for the estimation of pose  is expressed as: 

  , | = |,,
       (7) 

where the Posterior ,| is the estimation of the model pose  based on the recorded 
data  and the marker locations , which is our goal. The Normalization term  is 
constant and luckily does not affect the estimation of pose (Todorov, 2007). The Likelihood|,  is an estimate of the distribution of the data given the state of the system and the 
fixed marker locations ,.The Likelihood is the Global Optimization estimate. The Prior, is described by a generative model (e.g. a probability distribution over possible 
poses), centered at a predicted pose , and its variance encodes how uncertain we are 
about the prediction. The probability distribution is based on extrapolations from previous 
states, and/or our understanding of the expected kinematics/kinetics of the movement. 
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Figure 2: An example of Bayesian inference used to 
estimate optimally the bounce location of an incoming 
tennis ball. From vision we can estimate the Likelihood 
of different bounce locations (left hand ellipse). Prior 
experience as a tennis player may suggest that our 
opponent is an experienced player and thus the ball 
will tend to land close to the line (right hand ellipse). 
Integrating these two sources of information gives the 
control ellipse that denotes the Posterior (ball in 
center of inner ellipse) which indicates the most 
probably bounce location. Thus a player can get an 
optimal estimate of where the ball will land by using 
information in addition to following the flight of the 
ball (the Likelihood). (Reproduced with permission; 
Wolpert & Ghahramani [in press]) 

 
It is possible to account soft tissue deformations by modifying the Likelihood, based on the 
relationship between the residual vectors and the inferred joint angles, and changing the 
generative model to incorporate correlations between them. If there was no STA and all 
residuals were due to sensor noise, there would be no correlations. STA cause such 
correlations, because the tissue deforms in the same way every time you are in the same 
pose. Thus the correlations capture the effects of STA (to first order). 
The Prior could be interpreted as a correction factor on the Global Optimization solution. 
The simplest prior would be to assume that the state at time t is very similar to the state at 
time t-1. The probability distribution would then take the form: 
    ( ⃗   ⃗⃗⃗)     ( ⃗      )      (8) 
where    is an approximation to the covariance matrix.    declares how much you believe in 
the Prior compare to how much you trust the data. Models of STA and/or dynamics can be 
incorporated into the prior to minimize errors due to STA. 
Probabilistic pose estimation algorithms based on Bayesian inference represent the next 
generation of algorithms. These algorithms provide a mechanism for enforcing dynamical 
consistency on the pose, for mitigating soft tissue artifact, for fusing data from redundant 
sensors, and given creative Prior rules promise for solving sparse data sets. 
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 AN INVERSE METHOD FOR PREDICTING THE MECHANICS OF HOPPING 
FROM MOTION DATA INPUT 

Wangdo Kim1 and António Veloso1

Biomechanics Laboratory, Faculty of Human Kinetics, Technical 
University of Lisbon, Estrada da Costa, Cruz Quebrada, Portugal1

By segmentation of the body, this study estimated both the natural frequency and mode 
shapes of the mechanics of hopping, during a stance phase, using a purposely 
developed three degree-of-freedom state space model of the leg. The model, which was 
validated via comparison of measured and estimated motion data, incorporated a novel 
use of the Bellman-Quasilinearization technique estimators. Vertical displacements of the 
centre of mass of each segment (thigh, shank, and foot) were collected during a stance 
phase and used as observed data for unknown leg compliance parameters. It was found 
that the relative joint contributions to compliance during an exhaustive hopping appear to 
be tuned in part, to the type of foot-surface landing (input signals). 

KEY WORDS: leg compliance of an exhaustive hopping, tuning of the body segments, 
Bellman-Quasilinearization. 

INTRODUCTION: When a human runs or hops the centre of mass of the body rises and 
falls like a bouncing ball. The analogy has proved helpful in several studies of running and 
hopping (McMahon & Cheng, 1990) and was used again by Ferris and Farley (Ferris & 
Farley, 1997). They ask whether we modify the spring like properties of our legs to suit the 
elastic properties of the floor or ground on which we are moving. They have found it 
convenient to study hopping in place rather than forward running. There are two ways of 
describing the properties of spring: the stiffness of spring and the compliance that is the 
reciprocal of stiffness. In this study, we use compliance, because the compliance of two 
springs connected in series is simply the sum of the compliances of the individual springs. 
Thus, when we hop or run on a springy floor, the compliance of the floors is added to the 
compliance of our legs. It was found that leg compliance was reduced as platform 
compliance increased, thus keeping the total compliance constant (Ferris, Liang, & Farley, 
1999). In the recent study, this premise that leg compliance is not directly related to running 
mechanics, but rather, to the running environment was confirmed (Kim, Tan, Veloso, Vleck, 
& Voloshin, 2011). So far researchers have reported on the compliance of running/hopping in 
its environment (e.g., different surfaces) rather than on characterization of mechanics itself 
(e.g., relative joint contributions to compliance to the type of landing). If natural frequencies 
and mode shapes are available during an activity, then it is easy to visualize the motion of 
the system in each mode, which is the first step in being able to understand how lower 
extremity stiffness is implied for performance and injury. The detrimental effects of functional 
changes in impaired flexor tendons, such as exercised-induced muscle damage, on the leg 
compliance have yet to be adequately explored. Thus, the purposes of this study were to 
summarize the current knowledge of the spring-mass model and to propose a new paradigm 
for understanding of reaction of the locomotor system to repetitive impact forces, with special 
consideration of hopping. It was hypothesized that the presence of exercised-induced tendon 
fatigue would result in compliance mechanism in terms of the passive eccentric contraction 
of muscle tendon units (MTU) at the joints, thereby reflecting a disruption on the overall leg 
compliance. 

METHODS: Eleven healthy subjects (4 women and 7 men) performed a sequence of 
unilateral hops on her/his dominant lower limb until exhaustions. To establish a control 
parameter for the hoping task, she/he performed a squat jump (SQJ) before and after the 
hoping task. The minimum height for the jumps during the fatigue task was 80% of the 




