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The purpose of this study was to identify EMG pattern of running at different speed and 
incline based on a trial-to-trial analysis. Eight subjects performed treadmill running at five 
different conditions (4, 5 and 6 m/s, 5m/s at 5° incline, 5m/s at 2° decline). EMG data of 
eight leg muscles were recorded and transformed by a wavelet analysis (van Tscharner, 
2000). Ten subsequent steps of each subject and condition were classified by support 
vector machines. Between 93 and 100% of all EMG patterns were assigned correctly to 
the individual. According to the different running conditions recognition rates ranged 
between 78 and 88%. Hence, support vector machines can be considered as powerful 
nonlinear tool for the classification of dynamic EMG patterns.  
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INTRODUCTION: The electromyographic activity of a single muscle is considered as a 
complex stochastic signal that results from the superposition of the electrical activity of 
several motor units and therefore shows a high trial-to-trial variability. In dynamic movements 
such as running, the coordination of muscles with similar function (e.g. extension of the knee) 
can enhance this variability since the same movement outcome might be produced by 
different activities of single muscles. The most common approaches for the analyses of the 
surface electromyogram (EMG) aim on the extraction of the essential contents of the signal 
by averaging over time and trials (De Luca, 1997; Hermens et al 1999). In running, such 
techniques have been applied to analyze the EMG of the leg muscles at different speed (e.g. 
Kyröläinen et al. 2005, Gazendam & Hof 2007) and incline (e.g. Swanson & Caldwell 2000). 
However, there are two major disadvantages of these techniques. Calculating the signal 
mean over time (e.g. by root mean square) allows quantifying the overall intensity but does 
not provide any process-related information about the changes of EMG intensity during 
performance. If the EMG is averaged over trials, signal variations from trial to trial are 
primarily considered as noise and therefore neglected. It is implicitly assumed that 
differences between groups of trials (e.g. according to varying running conditions) must 
reflect in the average activity of a single muscle. Variations of the EMG that result from 
compensatory activities of different muscles cannot be obtained and hence the interplay 
between muscles cannot be analyzed.  
In this paper a different approach was chosen that takes benefit of the variability of the EMG 
signal and considers the interplay in muscular activity between different muscle groups. The 
main objective was to identify EMG patterns for running at different speed and incline.  
 
METHOD: Eight track and field athletes (age 18.6 years ±2.4; 5 male/3 female) participated 
in this study. All subjects were free from recent lower extremity injury or pain and trained 
regularly for at least 2 years. After a five minute warm up the subjects were asked to run five 
times 200 m on a treadmill at different conditions (4, 5 and 6 m/s, 5m/s at 5° incline, 5m/s at 
2° decline). Recovery periods between the trials were chosen by the subjects individually and 
lasted normally approximately one minute. EMG of eight muscles of the right limb were 
recorded at 2400 Hz using bipolar surface electrodes (AMBU 720 00-S) and single 
differential amplifiers (BIOVISION). The following muscles were considered: M. 
gastrocnemius medialis, M. lateralis, M. soleus, M. tibialis anterior, M. biceps femoris, M. 
rectus femoris, M. vastus medialis and M. vastus lateralis. The raw signals of each EMG 
channel were amplified by a factor of 2000. A band-pass filter with a bandwidth from 10 to 
700 Hz was applied. An accelerometer was fixed on the subjects’ right shoe and was used to 



determine the time of heel strike by a rapid change in acceleration. All data were collected 
synchronously and stored on a PDA that the subjects carried on their back (fig. 1). For each 
condition, the EMG of ten consecutive double steps were cut off and analyzed step by step.  
For the analysis of dynamic contractions, the non-stationarity of the EMG signals must be 
considered as this might cause errors in the time as well as in the frequency domain. 
Therefore, the EMG data were preprocessed by a wavelet analysis (van Tscharner, 2000). 
The wavelet-transformation is a suitable method to analyse non-stationarity bio-signals 
simultaneously in time- and frequency-domain. The wavelet transformation of an EMG Signal 
is performed as convolution of the signal with the wavelet. A filter bank of 11 non-linearly 
scaled wavelets was used that has been especially developed for EMG application (van 
Tscharner, 2000, 2002). 
All-in-all 378 movement patterns were analyzed. Every single movement pattern is 
represented by a n x D matrix, where n is the number of acquired data vectors during the 
stride length and D is the dimension of the data vectors. Each data vector consists of 88 
features, as every EMG of the 8 muscles was transformed into 11 wavelets. In order to cope 
with the huge amount of data, dimension reduction was necessary. Dimension reduction tries 
to eliminate redundancy from the data by so called feature extraction. The dimension D is 
mapped to a lower dimension d while trying to retain the geometry of the data as much as 
possible. Several linear and nonlinear methods exist for this purpose. Two possibilities can 
be applied to reduce the matrix in which a single movement pattern is stored. The first 
possibility is to reduce the dimension of the features. This will lead to a matrix with n acquired 
data vectors that transport some encapsulated information on the whole movement. In the 
other case the dimension reduction is conducted over the time. This technique is for example 
used in gait analysis with kinematic position data (Troje, 2002). For example, if a Principal 
Component Analysis is applied to the data, the movement is transferred into a low-
dimensional space spanned by the first (few) so-called eigenpostures of the walker. Similar 
to this approach multidimensional scaling (MDS; Cox & Cox, 1994; Kruskal, 1964) was used 
as a nonlinear reduction technique. MDS tries to retain the pair wise distances between the 
data points as much as possible during the mapping of the data to a lower dimension. The 
quality of the dimension reduction is expressed as a so-called stress function that is a 
measure of the error between the pair wise distances in the low-dimensional and high-
dimensional data space. The main goal of the mapping process is hereby the minimization of 
the stress function (Cox & Cox, 1994). In several tests an intrinsic dimension of 4 was 
estimated as optimal using Matlab and a proper toolbox (Van der Maaten, 2007). Hence, the 
data matrices were reduced to 4 x 88 matrices. A second (so called two-fold) reduction was 
omitted in first instance. 
After dimension reduction support vector machines (SVM; Vapnik, 1995; Chang & Lin, 2001) 
were used for the classification of the movement patterns. SVMs are supervised machine 
learning methods used for classification and regression, dealing successfully with small 
datasets and finding global minima (Bennett & Campbell, 2000). After compulsory amplitude 
normalization of the data, SVMs were trained with the bigger part of the data linked with the 
associated class memberships (i.e. person; running speed), and tested with the remaining 
data in order to calculate rates of how well those patterns were linked with the correct 
classes, that were excluded from the training process. This was conducted using cross 
validation (Jain, Duin & Mao, 2000), a standard technique to ensure more precise recognition 
rates and to avoid overtraining.  
 
RESULTS: Table 1 shows the recognition rates for EMG patterns according to the individual 
subject. Overall, the recognition rates ranged between 92,9% and 100%. Best results were 
found for level running at different speeds, where all EMG pattern were assigned correctly to 
each subject. Similar recognition rates were found if only the two different incline conditions 
were considered.  

 



Table 1. Recognition of Individual EMG Patterns 

Condition Recognition rate 
Level running at 4, 5 and 6m/s 
(238 trials) 

100% 

Running at 5m/s [+5°/±0°/-2°] 
(220 trials) 

97.7% 

Slope running [+5°/-2°] 
(140 trials) 

99.3% 

All trials 
(378 trials) 

92.9% 

Recognition rates observed for the running speed and incline conditions are listed in Table 2. 
About 88% of all EMG patterns were classified correctly if all trials at a running speed of 5 
m/s were analyzed. This includes level running as well as runs at an incline of 5° and a 
decline of -2°. This sample shows an even better recognition rate as for the incline conditions 
only (82,1%). Lowest rates were achieved for level running. Here, about 78% of all trials 
were assigned to the correct running speed.   

Table 2. Recognition of Speed and Incline  

Condition  Recognition rate 
Level running at 4, 5 and 6m/s 
(238 trials) 

78.6% 

Running at 5m/s [+5°/±0°/-2°] 
(220 trials) 

88.2% 

Slope running [+5°/-2°] 
(140 trials) 

82.1% 

 
DISCUSSION: The single EMG patterns embody highly individual characteristics that remain 
stable for each subject more or less independent from speed and incline. The individual 
recognition rates are far beyond chance level and reach values that have been reported in 
previous studies for less variable kinematic data (e.g. Jaitner et. al. 2001). Moreover, specific 
patterns for different running speeds and inclines can be identified with high probability. This 
is even more remarkable since the incline differs only slightly from level running. It is 
therefore assumed that the muscular activity of the leg muscles during running adapts very 
sensitively to environmental changes.  
From a methodological view, two specific aspects of the muscular activity can be addressed 
within this analysis, that at the first sight seem contrarily: a high individuality of muscular 
activity pattern that seems widely independent from changes in speed and incline and on the 
other hand specific pattern that remain stable for certain conditions. This highlights some 
critical aspects of traditional approaches in EMG analysis described in the introduction. 
Overall, support vector machines can be considered as powerful nonlinear tool for the 
classification of dynamic EMG patterns. 
If the EMG patterns for a specific running condition (e.g. running at a speed of 5m/s) remain 
stable within the subject but differ substantially between subjects this has considerable 
impact on the interpretation of EMG data. Practical implications that result from the 
comparison of different subjects might be misleading and should be drawn with particular 
care. Hence, approaches that focus on the analysis of multiple trials of the same subjects 
might be more reliable.  
An emphasis of this study was on the complex interplay between different muscles in 
running. The results indicate that compensatory muscular activities could be a key factor for 



the overall stability of the EMG patterns. The analysis of the interaction between various leg 
muscles therefore might provide a more detailed insight in the mechanism of running 
coordination. However, further research is needed to allow a better understanding of the 
intermuscular coordination in complex movement patterns.  
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