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INTRODUCTION: Recently, a large amount of research has been focused on the effect of 
movement variability on human performance in sport.  It is now generally accepted that 
specific amounts of variability are essential to attain a high level of performance (Davids et 
al., 2003).  When studying the effect of movement variability on outcome performance, the 
usual method involves collecting numerous data sets from an individual and, assuming that 
these data sets will all be different (i.e. contain variability), attempt to connect the amount of 
variability to the change in outcome or performance measure using a number of statistical 
techniques.  The aim of this study is to remove the requirement to collect a large amount of 
data which, by chance, may contain the level of variability required and shorten the data 
collection phase significantly by using the proposed process to create theoretical data sets 
containing alterable variability content while still exhibiting major characteristics of the actual 
data.  When these theoretical data sets are used in conjunction with a full-body 3D computer 
model operating inverse and forward dynamics simulations a change in outcome or 
performance measure can be predicted.  The advantages this process offers over traditional 
techniques is the ability to directly control and quantify the amount of variability introduced 
into the test data and a significant reduction in data collection time.   
 
METHOD: Initially, a full-body, 42 degrees of freedom 3D computer model was created and 
validated using single-subject analysis.  One elite female golfer (handicap 0) performed 12 
shots with her own driver club.  A 6-camera MotionAnalysis infrared camera system 
operating at 400 Hz recorded the kinematic data of the 27 markers located on the subject 
and this data were used to drive the computer model in ADAMS/LifeMOD software; model 
construction methods closely followed that of Nesbit (2005) and kinematic validation 
replicated Kenny et al. (2008).  The results illustrate a high level of correlation (r2=0.90) 
between the kinematic data collected in experimentation and the predicted trajectory of the 
validation markers of the model.  The long-term focus of this work is on the effect of 
variability at one joint and the resultant change in both outcome measure and kinematics of 
other joints.  However, the first stage is to create the theoretical data sets. To ensure the 
amount of variability within the theoretical data sets were controlled and realistic, the original 
data were analysed and used as the base data set.  All 12 trials were used -  the right knee 
angle data were all normalised to 101 points, a mean ensemble curve was created from the 
base data sets and the average standard deviation (sdavg) occurring over the whole trial was 
calculated.  The average standard deviation was used to signify the average amount of 
naturally occurring variability in the standardised trial data, i.e. variability not caused by an 
external factor such as fatigue. Variability was added to the mean ensemble curve at 20 
different levels, the maximum variability curve was created by adding a random number 
between ±sdavg to each data point; as the random number had containment limits it is 
considered pseudo-random only.  Other data sets were created by reducing the pseudo-
random number magnitude in 5% decrements to a minimum of 5% sdavg.  As a result 20 data 
sets were created each with differing variability content; set one ±100% sdavg, set two ±95% 
sdavg etc.  As the random number is based on white noise (having a distribution with mean 
and median of zero), the data occurring at this intermediate stage was not representative of 
the main characteristics of the base data due to relatively large rates of change between 
consecutive data points.  To remove these inconsistencies all 20 data sets were filtered 
using a 4th order reverse pass Butterworth filter with a cut off at 12Hz (a cut-off which has 



been reported to be useful for golf related data – Mitchell et al., 2003).  The filter was not 
optimised for each data set as it was not the intention to remove the noise, only reduce the 
issue related to rate of change.  As a result, 20 data sets were created each with a different 
amount of variability imposed on the base data. This variability was based on the 
characteristics of the original 12 data sets and as such are proposed to be representative 
and realistic data sets.   
Due to the nature of the white noise based pseudo-random data it is essential to examine if 
the theoretical data sets follow the proposed pattern, e.g. does the data set based on ±65% 
sdavg exhibit more variability than that based on ±45% sdavg

RESULTS AND DISCUSSION: The B&A analysis indicates that the LOA reduces as less 
variability is added to the data; from 1.44 at ±100% sd

.  To do this a Bland-Altman 
analysis (B&A) was completed; B&A is used to compare two measurements of the same 
variable.  As the data presented here is time normalised each data point on the theoretical 
data set has a corresponding data point on the mean ensemble curve and is therefore 
considered a valid method of comparison.  The 95% limits of agreement (LOA) from the B&A 
analysis will be used to assess the amount of variability contained within each theoretical 
data set and the bias will be used to assess if the gross pattern of the mean ensemble curve 
has been altered.   

avg to 0.267 at ±5% sdavg (see Table 1).  
Further analysis reports an r2

Table 1: Bland & Altman Analysis Results for Altered Levels of % of sd

 of 0.9264 when correlating the LOA values and the magnitude 
of the random number.  The bias remains close of zero on each curve, indicating that the 
variability is equally distributed above and below the ensemble curve. 

avg   

% of sdavg Bias (0) LOA (0) % of sdavg Bias (0) LOA (0) % of sdavg Bias (0) LOA (0) 
5 -0.016 0.267 40 -0.006 0.533 75 -0.093 0.863 
10 -0.006 0.277 45 -0.016 0.620 80 0.048 0.922 
15 0.010 0.249 50 0.019 0.737 85 0.108 1.161 
20 -0.021 0.380 55 0.092 0.811 90 0.155 1.147 
25 -0.025 0.360 60 0.048 0.767 95 -0.202 1.230 
30 0.004 0.481 65 -0.014 0.739 100 0.006 1.444 
35 -0.051 0.475 70 0.068 0.664    

CONCLUSION: The method outlined here, utilising a mean ensemble curve in conjunction 
with the addition of pseudo-random data and Butterworth filtering enables the practitioner to 
create valid and representative theoretical data sets which do not remove the main 
characteristics of the original data sets; as illustrated by the Bland & Altman analysis.  The 
combination of these theoretical data sets, where the amount of variability can be controlled, 
with a full body 3D computer model of the golf swing leads to the ability to assess the impact 
of variability on both performance and outcome measures within human movement without 
having to acquire large amounts of data.  The combination of these techniques expedites the 
reporting process within a sports setting, and allows a dramatic reduction in subject 
involvement during initial data acquisition compared with more traditional methodologies. 
Future work will concentrate on the effect the variability of joint angles has on the outcome 
measures, e.g. ball speed, ball carry, spin rates and performance measures within golf, e.g. 
weight shift patterns, x-factor stretch and swing plane.  The research will further assist 
biomechanists in assessing the impact of levels of variability on human movement. 
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