RESPONSE CHARACTERISTICS OF A SQUAT - AND COUNTERMOVEMENT JUMP

GIAVROGLOU A.; KALAMARAS K. and TSAROUCHAS L. Hellenic Sports Research Institute Athens Greece

INTRODUCTION

The purpose of this study was to investigate the differences of the kinetic and time parameters between a Squat Jump (SJ) as a simple reaction movement (e.g. all the starts) and a Countermovement Jump (CMJ) as an anticipated reaction movement (e.g. football, table tennis etc).

The study focused upon the contribution of the reaction time (RT) to the total action time (TAT) of the movement in both types of jumps.

METHODOLOGY

Ten (10) high performance volleyball players (Age: 23.3±2.6, body weight: 86.2±6.4 kg, Body height: 195±0.05 m) performed ten (10) different SJ and CMJ after both an acoustic and optic, predicted or unpredicted stimulus. Every jump was performed twice - as fast and high as possible - and the mean of the two values was estimated. The arms were bent behind the head.

Additionally, both types of jump were performed without any stimulus.

The kinetic and time data were collected using a force platform (KISTLER 0.4 x 0.5m) which was at ground level. The optic stimulus was given by turning on a light, while the acoustic by a characteristic sound.

During the test both types of stimulus were recorded as an electrical signal on an UV oscilograph simultaneously with the force curve (Fig.1).

RESULTS

There were no significant differences between the reaction time after a predicted and unpredicted stimulus (Tab.1).

Significant differences were found between the reaction time after an optic and/or acoustic stimulus in SJ (p<0.001) and in CMJ (p<0.001) (Tab.2).

The total action time (TAT) for the CNJ was over 49% longer than the TAT for the SJ.

The contribution of the RT to TAT was <25% for the SJ and <19% for the CNJ.

The acceleration time (AT) of the CNJ was significantly shorter than the one of the SJ (p<0.05), while the performance of the CNJ was significantly higher than the one of the SJ (p<0.05).

It is remarkable that the differences were significant between the total movement times with and without a stimulus (p<0.05).

CONCLUSIONS

The athletic movements, which are performed after an optic and/or acoustic stimulus and characterised as simple reaction movements (e.g. all the starts), are more effective to be performed without countermovement.

In all timing-dependent movements which are characterized as anticipated reactions (e.g. football, basketball, tennis etc.) a countermovement before the acceleration phase is effective, because (a) the rest time $(AT + \frac{1}{2}PT)$ of movement is shorter and (b) the athlete's performance is higher.

The expert athlete has the ability to anticipate and perform the countermovement in time, in order to begin the acceleration phase of the movement simultaneously with the final stimulus.

VIII Symposium ISBS

TABLE 1 The reaction time after predicted and unpredicted stimulus

ſ	SQUART	JUMP .	COUNTER MOVEMENT		
Ī	REACTION	TIME (ms)	REACTION	TIME (ms)	
	OPTIC	ACOUSTIC	OPTIC	ACOUSTIC	
PREDICTED	186 <u>+</u> 15	131 ± 11	210 ± 24	141 ± 17	
UNPREDICTED	188 ± 41	137 <u>+</u> 20	207 ± 25	151 ± 31	

(P> .05)

TABLE 2 Characteristics of a vertical jump (SJ and CNJ) MEAN AND STANDARD DEVIATION - N=10

		RT (ms)	AT (ms)	CMT (ms)	TMT (ms)	1/2 FT(ms); TAT (ms)	PERFORMANCE (m)
4	OPTIC STIM	186 2 15	302±34		564 2 45	260 217	750 ±42	.37 ± 04
טנ דא	ACOUSTIC	131 = 11	281±43		554:36	262±13	675:33	.37 ± .04
SOUAL	WITHOUT STIM		321249		594 - 55	270 ±15	594 = 55	.38 ± .05
AMIN	OPTIC STIM	210 ± 24	228±36	406 ± 41	914:289	280 = 27	1124±98	.43 ± .07
TER MENT	ACOUSTIC	141±17	220 ± 32	401±58	930 =100	279±27	1044=103	.42 ± .65
- Ten - Cen	WITHOUT STIM		247 : 37	492 = 49	1021=76	282 = 22	1021 = 76	.42 = .06

3

ž

ŧ

5

VERTICAL FORCE - TIME CURVE

VIII Symposium ISBS

.

Prague 1990

Figure 3a: Contribution to total action time - agent jump

Figure 3b: Contribution to total action time - counter movement jump

.

.

Figure 4: Total movement time

TA8. 1

THE REACTION TIME AFTER PREDICTED AND UNPREDICTED

•	SQUART	JUMP	COUNTER MOVEMENT		
	REACTION	TIME (mis)	REACTION TIME (ms)		
	OPTIC	ACOUSTIC	COTIC	ACOUSTIC	
PREDICTED	186 ± 15	131 ± 11	210 ± 24	141 ± 17	
	SN	NS	NS	NS	
UNPREDICTED	186 ± 41	137 ± 20	207 ± 25	151 ± 31	
	19. 05.				

TAB. 2 CHARACTERISTICS OF A VERTICAL JUMP (SJ and Chiji) MEAN AND STANDARD DEVIATION - N = 10

		RTimsi	AT IMAL	CIAT (ms)	TMT (ma)	1:2 FTime	TAT (mai	PERFORMANCE
	OPTO STAN	186 2 15	102:14		564:45	250 217	750 242	37 ± 04
N	4004±110.	131 : 11	281 243		554:36	262:13	675 ± 13	37: 34
Aurola -	WITHOUT ST'M		3212 49	۰	594235	270 = 15	594 z 55	38 : 55
LN UL JURIT	STN .	210224	229 236	4061 41	314239	280127	1124198	43 2 37
	ACOUSTIC	141217	220 = 32	40125d	939 2100	279 = 27	1044 2 103	42 = .65
NO eff	WINOUT		247 : 37	492 : 49	1021 = 74	282 = 22	1021 = 78	42 2 .06

VIII Symposium ISBS

	VERTICAL (z)	ANTEROPOSTERIOR (y)	MEDIOLATERAL (x)	TERMORAL (T)
κ <u>λι</u> -	1st absolute	14 - 1st max braking peak	151 - total impulse on	TA1 - abs. time to ZA1
	max. force		the right (-) of	TRI - rel. time to ZA1
			the running direction	TA2 - abs. time to ZA2
Z.R.1 -	tst netative	75 - min braking peak	152 - total impulse on the	TR2 - rel. time to EA2
	ma force		left (+) of the	TA3 - abs. time to EAJ
			running direction	TR3 - rel, time to ZA3
7.12 -	absolute min	YE - 2nd max braking peak	IX - algebraic impulse	TA4 - abs, time to Y4
	force		(1X1 + 1X2)	TR4 - rel. time to Y4
7R2 -	rolative min	Y8 - max propetting peak		TAS - abs. time to YS
	taco			TRS - rel, time to YS
213 -	2nd absolute	tyt- braking impulse		TAG - abs. time to Y6
	max force	192- propelling impulse		TP6 - rel. time to Y6
7.ft] -	2nd relative	1Y - algebraic impulse		TA7 - abs. time of brak
	max force	(191 + 192)	1	phase
17.1 * -	Imperiate on 2			TR7 - rel, time of brak
	asts for			phase
	braktno			TA8 - abs. time to Y8
	duration			TR8 - rel, time to Y8
17.2 * -	impulse on Z			ST - support time
	asts for			TAX1- abs. time of IX1
	propetting			TRX1- rel. time of IX1
	duration			TAX2- abs. time of TX2
123*-	total impulse			TRX2- rel, time of 1X2
	on Z axts		1	
124*-	impulse on Z			
	axis to 2nd			
	nata force	-		
125*-	impulse on Z a from 2 nd max		Ilical force minus HW	

IDENTIFICATION OF TEMPORAL AND DYNAMIC PARAMETERS

.