DEPINTTION OF THE ACTUAL ANGULAR VELOCITY OP REAL-LIVE BODY

MOTIONS

HIIDEBRAND, F.
 Research Institut of Physical Culture and Sport Leipzig GDR

InTRODOCTIO

By appointed moments of development in sport science alvays the problem of airborn movements is considered. Por rigid bodies ve have a complex but well-trom theory to solve problens of these movements, but for living subjects these probleas mast be solved by a special and more complex approach. Bspecially we must consider the inner forces.

In the case of sporting movements, we bave often difficulty to find serviceable parameters for simulation. The number of parameters and boundary values of three-dimensional models is beyond 20 and the number of rule-functions beyond 10 . In practice we see, that it takes weeks to find the right functions. Therefore, trying to simulate a complex movenent, it is necessary to analyse it before.

But just the analysis shows some difticulties. For exauple, that means the vector of angular velocity of a systea, composed of several limbs, wich are able to move one against another? this question is also important for metbods of training. It is clear, that this vector is not directly masurable. The analysis of film or videopictures and subsequent computing must belp.

We vant to clarify some probleas wich occurred by deteraination of angular velocity of body-movesants. We suppose that the time histories of position in space of all segrents vould te find out.

DEPINITION

In sporting practice the tern of tuist-axis or somersault-axis are usual. But they are not exactly defined (especially vith crooked position!). Purther it is knom, that an athlete is able to influence bis mosent of inertia and angular velocity only by moving tis trunk and limbs and to take every position in space (Pig.1).

Hov to define under these conditions the vector of angular velocity of a buman body?
The physically only excellent cartesian systea of coordinates is the systea of principal axes of inertias of the whole body. Ne can compute them out of the tensor of inertia of the whole body together with the principal moment of inertia for any position. This systen is fixed at the center of ass and works as initial systen to compute the angular velocity.

Like in the case of the rigid bodies the CulsR's theoren allows to define in only a single way the trist angle and the axis of rotation of the body at any sall interval of time. Then, the angular velocity is the first derivative of the twist angle. In this way the angular velocity can be exactly defined and computed.

PROBLEXS

The tensor of inertia is given by the formula

$$
A=\int\langle r \geqslant r-r t r\rangle d x
$$

(Pig.2). The matrix A is symetric, its elements are nased $\mathrm{a}_{i j} ; i, j=1,2,3$. The system of principal axes of inertness is to be distinguished by disappering of the elements a_{i}; besides the diagonal of A . Mathematically such a systea alvays exists, for A is symetric. The principal moments of inertia $1_{1}, l_{2}, l_{3}$ are the (real)
roots of the cubic equation

$$
\operatorname{Det}(\mathrm{A}-1 * I)=0 \text {. }
$$

How arise a problem of ranging the eigenvalues 1_{i}. Two eigenvalues can not be different in the case of equality (Pig.3). Therefore, we have to find methods to define the tine histories of the eigenvalues.

Pirst method:

We take the principal monent of inertia from a moment t and compute a approximate eigenvalues from the moment $t+D t$ by the formula

$$
l_{i}(t+D t) \quad 1_{i}(t)+D t \frac{d l_{i}}{d t}
$$

whe bave

$$
\frac{d 1_{k}}{d t}=\Sigma L_{k}{ }^{i j j_{i j}} \frac{d t}{d t}
$$

and, for example

$$
1_{i}^{i i}=\frac{a_{j j^{a} k x}{ }^{-a} j k^{2}+l_{1}^{2}-l_{1}\left(a_{j j^{-d}}{ }_{k k}\right)}{\left(l_{1}-l_{2}\right)\left(l_{1}-l_{3}\right)}
$$

i, $j, t=1,2,3$ and several.
the approximate eigenvalues $L_{i}(t-b t)$ belp us to range then and to define the systen of principal axes. The zethod is workable if principal monents of inertia differ more then 0.05 kgn . The derivates of the elements a_{ij} wust be computed numarically.

Second method:
He define in a comman sense the system of principal axes inertness at the beginning of analysis and assume ve have computed the system of any tire t . How, there are able 24 several cartesian systens at the time t+Dt; wich only differ in directions and orientations. Dnder these 24 systems we find the one which ainiaizes the sum of scalar products of the ayes at and t+Dt subsequently (Pig. 1) and so on till the end of time interval.

The second method is based on the principle of continuity: if the elesents a_{ij} of the symatric atrix a differ only slightly, the eigenvalues differ small too.

It is easy to see, that the algorithm only works in the case if the twist angle does not exeed 45 degrees (Pig.5). Therefore, the frequency of filmcamera must answer theis purpose. Our colputing program bases on the second method and works vithout error.
figures 1-5 are taken fron "Training und Metthamp $"$, Sportverlag Berlin, 1990.

stadary

The tvist or the somersault axes of a human body are not defined exactly. We note that an athlete is able only with inner strength to take every position in space under free fall conditions. It is impossible to describe the rotative velocity in the case, only the angular momentum and the principal moments of inertia of the body are know. We give a definition of the vector of angular velocity for human body movemants as alteration in time of the cartesian systea of principal axes of inertness.

Pigure 1: Lample o: divers movement

Figure 3: Principal movements of inertia and two severat time histories of then

Figure 4: System of principal axes e_{1}, e_{2}, e_{3} on t and $t+\Delta t$

Pigure 5 : Wrong desined systen of principal axes e_{1}^{*}, e_{2}^{*}, on $t+\Delta t$; right is $e_{1}^{(t+4 t), ~} e_{2}^{(t+\Delta t)}$ (axis e_{j} normal to the plane)

