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INTRODUCTION

By appointed moments of development in sport science always the probles of airborn movements is considered.
For rigid bodies wve have a complex but vell-known theory to solve probless of these novesents, but for living
subjects these probless must be solved by a special and more complex approach. Especially we must consider the
inner forces,

In the case of sporting movements, we have often difficulty to find serviceable parameters for simulation.
The nusber of paraseters and boundary values of three-dimensional models is beyond 20 and the number of
rule-functions beyond 10. In practice we see, that it takes weeks to find the right functions. Therefore, trying
to simulate a cosplex movement, it is necessary to analyse it before.

But just the analysis shovs some difficulties. Por example, what means the vector of anqular velocity of
2 systea, composed of several liabs, which are able to move one against another? this question is also important
for metbods of training. It Is clear, that this vector is not directly measurable. The amalysis of filaor
videopictures and subsequent coaputing sust belp.

We vant to clarify sose probleas which occurred by deteraination of angular velocity of body-sovesents. ¥e
suppose that the time histories of position in space of all segments would be find out.

DEFINITION

In sporting practice the term of twist-axis or somersault-axis are usual. But they are not exactly defined
{ especially vith crooked position!). Purther it is Xnown, that an athlete is able to influence his mcment of
inertia and anqular velocity only by moving his trunk and limbs and to take every position in space (Fig.1}.

Bov to define under these conditions the vector of anqular velocity of a human body?
The physically only excellent cartesian systea of coordinates is the system of principal axes of inertias of
the vhole body. We can compute them out of the tensor of inertia of the whole body together vith the principal
mment of inertia for any position. This system is fixed at the center of mass and works as initial systea to
compute the angular velocity.

Like in the case of the rigid bodies the ZULER's theorem allows to define in only a single way the twist
angle and the axis of rotation of the body at any small interval of time. Then, the anqular velocity is the
first derivative of the twist angle. In this way the anqular velocity can be exactly defined and cosputed.

PROBLENS

The tensor of inertia is given by the formula
N | (rtI-rtr) dn

(Pig.2). The matrix A is symsetric, its elements are nased a;:: i, = 1,2,3. The systea of principal ares of
inertness is to be distinguished by disappering of the elements a;. besides the diagonal of A. Nathepatically
such a systea alvays exists, for A is symetric. The principal sosents of inertia 1;, 15, 1 are the (real)
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roots of the cubic equation
Det { A -1#1 ) = 0.

Bov arise a problem of ranging the eigenvalues };. v eigenvalues can not be different in the case of
equality (Pig.3}. Therefore, we Lave to find methods to detine the tise histories of the eigenvalues.

First method:
We take the principal mosent of imertia from a moment t and compute a approximate eigenvalues froa the
movent t#0t by the formula

ay
li(tfﬁt) li(t)ﬂ)t-———

dt
We have
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i, 3, x=1,2, 3 and several.

the appzoxmte eigenvalues 1; {t+Dt) help us to range them and to define the systea of principal axes. The
method is workable if principal lolents of inertia differ more then 0.05 kgn. The derivates of the elements 35
wst be computed numerically.

second method:

We define in a common sense the system of principal axes inertness at the beginning of analysis and assume
ve have computed the system of any time t. Now, there are able 24 several cartesian systems at the time t+Dt;
vhich only differ in directions and orientations. Under these 24 systems we find the one which minimizes the sun
of scalar products of the axes at and t+Dt subsequently {Fig. 4) and so on till the end of time interval.

The second method is based on the principle of contimuity: if the elements 3 of the symmetric matrix
A differ only slightly, the eigenvalues differ small too.

It is easy to see, that the algorithm only works in the case if the twist angle does not exeed 45 degrees
(Fig.5). Therefore, the frequency of filmcawera must ansver theis purpose. Our computing programa bases on the
second method and works without error.

Pigures 1-5 are taken from "fraining und WettXampf®, Sportverlag Berlin, 1990.

SUMMARY

The twist or the somersault axes of a human body are not defined exactly. We note that an athlete is able
only with inner strength to take every position in space under free fall conditions. It is impossible to
describe the rotative velocity in the case, only the anqular momentum and the principal moments of inertia of
the body are known, We give a definition of the vector of angular velocity for human body movements as
alteration in time of the cartesian systea of principal axes of inertness.
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Tigure 1: Pxample of divers movement
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Figure 3: Principal movements of inertia and two severil time histories of them

Figure 4: System of principal axes e, e,, e, on t and t+At
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e, (t+at)

e, (t)

ey (teat)=el (teat)

Figure 5: Wrong defined systea of principal axes e, €, on te &t right is ey{te at), eyltrat)
(azis ey normal to the plane)
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