MATHEMATICAL MODELLING OF PERFORMANCE AND UNDERLYING ABILITIES IN SPRINTING

LAMES, M.
University of Mainz
Mainz
FRG

1. Problem

There are two traditional methods of analysing behaviour in sprinting competition: apart from measuring stride-frequency and stride-length, the method of speed curves is common. the latter one is usually the result of tive peasurements taken on certain intervals on the course. In case of a l001-dash usually every 10 neters are seasured.

In order to get the speed curve the difference betieen two neighbouring measurements is taken and diviced by the distance betifeen thea. This procedure produces the mean velocity for every interval.

Figure 1. Speed curve dram as a polygone and step-function
Sone critical resarks have to be applied:

- The comon represention of speed curves is a polygon which connects the average speed levels at the midpoints of the intervals. This suggests a continuous function and it is a simplification to assume rean speed in the middie of an interval. Actually the procedure supplies a non-continuous step-function (Pig.1).
- Detailed analysis of the results is not satisfactory: if one simply asks for the location of aximum speed the ansuer can only be the interval vith maximuaverage speed. One cannot even be sure that the actual maximu is located in this interval, because in unlucky cases it wight as well be in a neighbouring one.
- Taking differences - in cases of acceleration curves differences of differences - makes the error for velocity measurements systematically larger than the error we bave already for a single time measurement. These errors are amplified by the arrangesent in a zeasurement chain, where the randon error of one interval becores the systematic one of the rext.

Apart from these more sethodoiogical objections one should consider a general ain of analysing perforance in competition: to establish a link between behaviour (visible) and its conditions /invisible/, betreen description and explanation. This desideratur applies to all biowechanical measurements.

In order to generate practically useable information for training it is not alvays sufficient to stick to mere description of vhat is going on, but one bas to ain at the underlying conditions of this behaviour.

There is broad consensus on underlying abilities in our example, the 100 a - dash: the basic abilities are
reaction time,
ability of acceleration, sprinting speed and
sprinting emdurance.
The operational definitions of these basic abilities appear - exept for reaction tive - to be problematic though:

- The ability of acceleration includes the aspects of high acceleration and of acceleration over a long tixe. It is a complex ability which must not be necessarily one-disensional. Operational definitions can only ais at one aspect: the initial acceleration represents the aximun amount of acceleration, the distance vith positive acceleration or the corresponding time used to reach maxinus speed stand for its duration.
- The conventional method measures sprintim speed as the maximu average speed in an interval. So, apart from errors due to the original time measurements, we have a systematic error: maximun average speed underestiates by definition maximun speed. (This bolds although - for other error-sources - ve usually observe an overestimation of maximum speed (Pig. 3)/.
- The operational definition of sprinting endurance as a difference of differences (naximum speed ainus final speed) increases the influence of errors fro the original measurements.

One reason for the probless cited above is that input data (intermediate tises) cannot be transforsed into a satisfactory description of behaviour in competition. The resulting step-furction is non-continuous and supplies only average speed per interval.
2. Modelling o: sfrinting behaviour with analytic functions

Facing these probleas the idea cabe up to describe sprinting behaviour with analytic displacement-, speedand acceleration- functions ottained by (non-linear) regression. The advantages of a regressional approach are obvious:

- Errors in the original measurements are smoothed by the regression function. this holds because one doesn't interpolate but nininizes the Squared sum of Errors (SS8). Compared with the conventional method de expect a damping of errors instead of an amplification due to the use of differences.
- Speed and acceleration are no longer deterainated by using differences but by differentiation of the fitted sunction.
- Using continuous functions we bave speed and acceleration values for any point on the course. Especially the deteraination of exxisua speed location results in a point and not in a loa-interval. although this point is of course still subjected to errors these are not systeatic any more.

2.1. Developenent of an appropriate model-function

Since reaction time is an additive parameter it is excluded from the following considerations.
Hodel-building vith regression tunctions can be performed in two fundamentally distinct vays. Inductive model-building condenses data into a function: "Which function do I know that looks almost the way way data do?" Deductive model-building tries to generate regression functions froz asssumptions on the underlying process:" mich function describes the internal functioning of the modelled systen?"

Inductive model-building has severe dravbacks. One just can't have the same confidence in an inductive model as in a deductive one, although sometimes conplexity of systens or lacking knouledge perwit only inductive models (see FJCHS/LAVES 1989).

Trying the deductive afproach ve assupe that the speed curve can be understood as a superposition of two groath processes: acceleration v_{A} and fatigue v_{F}. With an additive superposition we arrive at the
model-function v as follows:

$$
\begin{aligned}
v(t)=v_{A}(t)+v_{P}(t)=A \quad\left(1-e^{-k t}\right)+P\left(1-e^{l t}\right) \\
A_{1} x_{1}, 1>0, P=0 .
\end{aligned}
$$

v is a function of tine with 4 parameters and, typical for deductive modeling, these parameters have got interpretations in the original system:

A = absolute speed-linit achieved by infinitely long acceleration without fatigue,
$k=$ steepness of acceleration process,
$?=$ onset of fatigue and
$1=$ steepness of fatigue-impact.

Wote that one is not dealing vith a mechanical model but with a system-oriented one.
In 1951 aENRY and TRAPTOY have used a model which is identical to the acceleration conponent of the introduced one. Their wodel perforsed very well in predicting speed-curves of $60 y$-dashes. Also they Sound that the paraseters A and X vere independent.

Practical calculations vith our model forced a modification. Having only 11 data points but a parameters results in unstable estimates for the parameters. In addition to this, the two parameters of the fatigue-process are only loosely determined by data. The two reasons are that only the last measuresents shoy one significant impact of fatigue and that its overall influence sprinting speed is salll compared vith the influence of acceleration.

These inductive considerations on lacking quality of data lead to the elinination of parameter 1 , because the steepness of the fatigue-impact seems even less deterainable than its onset. Eliaination of a regression parasete: means that an appropriate constant value for it is chosen instead of obtaining an estimate by a regression algoritha.

The model-building process is resumed in Figure 2. Several kineatic aspects are involved:

- data consist of internediate times,
- the godel-tunction is a speed-curve over tixe,
- usual representations are speed and acceleration curves over the course and
- regression is based on displacement over tixe (This has the advantage of axking use of the ra-data without transformation).

The regression function is oktained by integrating the model function v :

$$
s(t)=(A+F) t-A / k\left\{1-e^{-k t}\right)+B / 1\left(1-e^{1 t}\right) .
$$

Acceleration is obtained by differentiation:

$$
a(t)=A k e^{-k t}-p l e^{1 t} .
$$

A critical reark has to be made: for a starting runner ($t=0$) holds $s=y=a=0$, while the model assuses maximal acceleration at $t=0$ (see Pigure 2). As a conseguence one has to admit that the rodel is not able to describe precisely what is going on on the first few meters. This is not surprising because one can't reasonably expect a description of the building-up of acceleration on the first weters by a wodel which bas just the tive for 0 and 10 meters as relevant input. In order to describe this phase wore precisely different methods had to be applied.

Figure 2: Kineastic aspects of sprinting perforance.

2.2. Deriving indicators for basic abilities

with analytic speed- and accelaration functions it is possible to overcome some of the troubles with operational definitions of basic sprinting abilities quated above.

- The best indicator of reaction time is of course reaction tine itself.
- The ability of acceleration is described in its two aspects: asount and duration.

The indicator for the asount is $\mathrm{a}_{0}=\mathrm{a}(0)$, that is the initial acceleration.
Usual indicators of duration for acceleration are the tive used to reach maximu speed (t) and the point on the course for this event $s_{m}=s(t)$. Analysing empirical speed curves reveals that speed is alsost constant between 40 and 100 meters though. So, fixing the location of speed aximua is a sort of ganding. Por this reason as indicator the tive $t_{\text {eps }}$ is chosen. At that time acceleration has not yet dropped to zero but to a very
 expect their to be mach more precise.

- Sprinting speed is indicated as usual by maximua speed: $\quad v_{\mathbf{a}}=v\left(t_{\mathbf{1}}\right)$.
- The quotient q_{v} of final speed by axiaum speed is taken as indicator of serinting endurance: $\left.q_{v}=100 v_{i}^{\prime} t_{120}\right) / v\left(t_{1}\right)$ [1].

3. Results of a pilot study

3.1. Robustness of the suggested method

Earlier the sensitivity of the conventional differences-method to errors in measurenents vas criticized and a bigher robustness of the regression-method tas postulated. A chance for testing these assurptions are the remarkable differences betwen interval tives reported for the 100n-final at Rose 1987. LeTzEITER (1983) pointed out that interval times reported immediately after the event deviated from those published by the official biomechanical comission some months later. Obviously the first measurement suffers much more from errors than
the last ane uthich used high－irequency techniques．

Pigure 3：Speed curves fron interval times reported imediately after the final at Rowe 1987 （dashed）and reported by the biowechanical comsission（solid）．The curved lines are the results of the regression method for each set of data．

In Figure 3 in addition to the step－functions the regression curves are dram．One sees that they are not only rearkably smoother but in particular that the two curves lead almost to identical results．This is a convincing indication of robustness because we know that one set of raw data suffers a lot from errors．Even the largest deviation between the two curves at the end of Ben Johnson＇s dasb is sualler than $0 . \mathrm{la} / \mathrm{s}$ ．

3.2 Results on sprinting atilities

The introduced method supplies estimates for the parameters mentioned above，which are only a selection of possible variables．With this data as input，ideally based on a large number of cases，very sophisticated analyses of sprinting behaviour and underlying abilities are possible．Such analyses are indppropriate though to the data base of this pilot study：the 16 100m－finalists of Rome 1987．It＇s ain is a methodological one．But even with 2×8 cases descriptive and correlative results seen to be very interesting．
table 1
Descriptive statistics of $100 \mathrm{a}-\mathrm{finals}$ at Rode 1987.

vatiatul	abtr	m／1	cean	＊ャ．© \％\％	Min	就x
cotal time	${ }_{1}^{1} 190$	1	10.14 11.07	$\begin{aligned} & 0.163 \\ & 0.096 \end{aligned}$	$\begin{array}{r} 9.13 \\ 10.90 \end{array}$	$\begin{aligned} & 10.34 \\ & 21.19 \end{aligned}$
reñeion timm	${ }_{\square}^{5}$	t	0．18	$\begin{aligned} & 0.043 \\ & 0.030 \end{aligned}$	$\begin{aligned} & 0.109 \\ & 0.142 \end{aligned}$	$\begin{aligned} & 0.232 \\ & 0.241 \end{aligned}$
```init14l acenlan*tyon *amelor accolerateson```		\％	$\begin{aligned} & 1.74 \\ & 1.04 \\ & 1.04 \\ & 8.24 \end{aligned}$	$\begin{aligned} & 0.358 \\ & 0.377 \\ & 1.907 \\ & 0.281 \end{aligned}$	$\begin{aligned} & 9.15 \\ & 1.33 \\ & 6.43 \\ & 5.88 \end{aligned}$	$\begin{array}{r} 10.91 \\ 9.50 \\ 10.00 \\ 6.77 \end{array}$
hangen of scolaration	（㤟	\％	78．85	17.44 2.43	$\begin{aligned} & 59.42 \\ & 49.52 \end{aligned}$	$\begin{array}{r} 100.00 \\ 58.17 \end{array}$
time for ace． $\begin{array}{ll} 13 & 0.30 \\ \hline \end{array}$	${ }^{\text {cops }}$	a	$\begin{aligned} & 5.2! \\ & 5.05 \end{aligned}$	$\begin{aligned} & 0.288 \\ & 0.194 \end{aligned}$	4.65 4.76	$\begin{aligned} & 5.53 \\ & 5.33 \end{aligned}$
－angth ot mec． en 0．1n／32		n	$\begin{aligned} & 46.35 \\ & 10.76 \end{aligned}$	$\begin{aligned} & 3.32 \\ & 2.80 \end{aligned}$	$\begin{aligned} & 40.25 \\ & 38.25 \end{aligned}$	$\begin{aligned} & 49.36 \\ & 41.47 \end{aligned}$
由Axis Tum －pmad		1	$\begin{aligned} & 11.32 \\ & 10.37 \end{aligned}$	$\begin{aligned} & 0.274 \\ & 0.112 \end{aligned}$	$\begin{aligned} & 10.7 \\ & 10.25 \end{aligned}$	$\begin{aligned} & 11.68 \\ & 10.55 \end{aligned}$
Fuotent por mrivenanc．	¢\％	$t$	$\begin{aligned} & 99.28 \\ & 92.04 \end{aligned}$	0.67 2.36	$\begin{aligned} & \text { in. } 41 \\ & 35.71 \end{aligned}$	$\begin{array}{r} 100.00 \\ 3.30 \end{array}$

The descriptive statistics of 9 variables are given in table 1. Pron the methodological point of viev it is inportant to note that $t_{e p s}$ and $s_{\text {eps }}$ are obviously better estientes than $t_{n}$ and $\mathbf{s}_{\mathbf{n}}$. For men $s_{\mathrm{a}}$ bas a range of 40 meters wile the range of $\mathrm{s}_{\text {eps }}$ is less than 10 beters. The sase tendency can be observed for women, but, as all women bave a decrease in sprinting speed, their maximum speed can be more precisely deterained, whereas men do not noticeably reduce their speed ( $\left.\operatorname{\mu in} \mathrm{g}_{\mathrm{y}} \mathrm{y} 9 \mathrm{~s}: 41\right\}$ ).

## TABLE 2

Intercorrelations of variables describing perfornance on 100 m (upper balf: men, lower half: wom: levels for significance: 0.71 (53) and 0.83 (18)).

	$t_{100}$	$t_{r}$	$a_{0}$	$t_{\text {eps }}$	$s_{\text {eps }}$	$v_{m}$	$q_{v}$
$t_{100}$	1	.41	.28	-.57	-.74	-.97	-.11
$t_{r}$	.67	1	.42	-.34	-.35	-.34	-.47
$a_{0}$	.16	-.29	1	-.93	-.82	-.46	-.22
$t_{\text {eps }}$	-.32	.22	-.97	1	.97	.73	.36
$s_{\text {eps }}$	-.46	.12	-.93	.99	1	.88	.34
$v_{m}$	-.83	-.27	-.62	.71	.81	1	.11
$q_{v}$	-.18	.18	-.34	.51	.49	.16	1

Table 2 shows the intercorrelations of variables for sen and wosen. Two aspects are of particular interest: the deteraination of the conplex criterion of performance ( ${ }_{\text {poo }}$ ) and the intercorrelations of basic abilities.

Maximun speed accomts alnost singulary tor the total 100a-tise. The correlation is higher for men ( $r=-0.97$ ) than for women ( $r=-0.83$ ) but the men's sample bas a broader range ( 0.51 s versus 0.295 for women). pigure 1 shows the irpressive correlation.

Maxima speed itself is correlated vith duration and length of acceleration and to a smaller degree vith initial acceleration. Reaction time and sprinting endurance seen to be of sinor importance for perfonance in the two samples.

A very astanishing result is the earked but negative correlation betveen initial amount and duration of acceleration. Although these findings are consistent vith a one-dimensional concept of the ability of acceleration, the two aspects sees to be antithetic: one can either have a large initial acceleration or a long acceleration. An explanation of this finding could be selective adaption of strenght abilities to contact tive on the ground which decreases considerably.


Pigure 4: Scatter diagras for maximus speed $t_{\text {a }}$ and total tise $t_{100}$ for the finals at Rome 1987.

## 4. Sumary and discussion

a) Method

The regression metbod proved to be superior to the differences method. The advantages are:

- suoothing of rav data versus alplification of errors,
- continuous curves versus mon-continuoss step-fusctions,
- values for any point on course versus values only for intervals.

One reason for the excellent fit is that loon-dashes are run with maxima acceleration and no tactical manipulation of sprinting speed occurs. Exceptions could be the last metars of elininating beats when qualification is sure. But even in this case only variables quantifying sprinting endurance would be affected. This objection inplies though that the model-function is not suitable for events longer than 200 aaters, because in those events running speed is very wach detenined by tactical considerations.

The applied model is obtained by deduction and describes the additive superposition of an acceleration-process and a tatigue-process. Practical calculations impose two restrictions: one fatigue-parameter must be beld constant and the nodel is not able to describe precisely the building-up of speed and acceleration on the first meters.

The min sciencetific advantage is that the metbod allows for calculation of parameters wich can be interpreted as precise indicators of basic sprinting abilities.

## b) Practical results

A first result is that values for maxisur speed reported by the differences method have to be doubted. Because of the arrangement of seasuresents in a cbain it is very likely that at least one interval sbous values that they are too high. The error-struck measuresent published imbediately after Johnson's victory at Rome 1987 reported a maximun speed of $12.05 \mathrm{a} / \mathrm{s}$, the nore grecise bionechanical comission $11.76 \mathrm{~m} / \mathrm{s}$. The regression method results in a maximua speed of $11.66 \mathrm{~m} / \mathrm{s}$.

The length and duration of positive acceleration is a question of practical interest. It can nou be answered by pointing out a certain point on the course. A better indicator for this aspect of the ability of acceleration is the length and duration of positive acceleration greater than an almost negligible thresbold (suggestion: eps $=0.1 \mathrm{k} / \mathrm{s}^{2}$ ).

Concrete results of the pilot study on the two tinals at Rowe 1987 are:

- vith the exceptions of reaction time and duration of acceleration men are significantly superior to acmen in all variables,
- extreme groups differ demonstrably in duration and length of acceleration and especially in maximum speed,
- maximum speed is clearly the most important ability accounting for overall perforace and
- the ability of acceleration seeas to show a conflict between initial acceleration and its duration.

The special impact of the introduced method is that the gap between description and explanation, betwen perforaance in coapetition and underlying abilities is closed. The abilities can nov be tested under oftian conditions: during competition.

If further investigation confirss its excellent suitability and technical progress akes data sore available, the introduced method could becose a routine-procedure of future training in sprint.

REFEREMCES:
FIUCHS, P. and LAVES, M.: Mathematische Modellienung und Leistungsprognosen in der Leichtathletix (Mathesatical
modeling and predicting performance in track and field-events). In: Sportvissenschaft 19(1989)4, 420-435.
HIPNY, P.K. and TRLFTON, I.V.:The velocity curve of sprint running. In: The Research quarteriy (1951) 22.
IETZEITER, M.: Wettkampferhalten und Sprinttraining: Zur Diagnose des Teapoverialtens von Meltelassesprintern
(Performance in competition and training of sprint: Diagnosis of speed behaviour of word-class athletes).
In: Die Lehre der Leichtathletik 28(1939)1, 50-67.

