JAVELIN

BEST, R.J.*+; BARTLETT, R.M.+ and SAWYER, R.A.* *Department of Aeronautical and Mechanical Engineering University of Salford
UK
+Department of Sport and Human Sciences Crewe+Alsager College of Higher Education UX

ABSTRACT

An interactive coaputer softrare package has been developed that simulates the flight of the men's ney rules and ladies javelin's based on measured aerodynanic data. the progran includes user directed inputs of the most important variables in javelin throving vith a comprebensive HELP section giving scientific and non-scientific descriptions of each variable as vell as sets of realistic inputs to be used as a guide by the user. The user can assess the effects of small changes in each release variable in a vay that is ispossible to control in the field vithout baving to put athletes through potentially bazardous experimentation.

The extensive software graphics reveal a real-time simulated javelin flight based on the user's infut release data. The flight graphics include a vindou which zooms in on the javelin showing important flight information, and essential post flight information including simulated distance throw and landing angle. Flight graphics are followed by options to duap information on black and wite or colour printers, re-run the simulation in real time, input ney release data, calculate the optimus release conditions and range possibilities for that particular thrower, or to choose an extensive graph plotting section. The graph plotting routines allow observation of flight characteristics (e.g. velocity variation during (light) relating to the sizulation sost recently perforsed. The colour coded graph section is an essential prerequisite sor researcher, coach, teacher, student, athlete and manufacturer since it can be used to develop a sectanical and aesodyras: understanding of the event. Additional softare material incorporated includes unconstrained optisisazion algorithms and 3 -dimensional contour mapping or isometric plotting using NNC library routines with the authers" extensive data libraries.

In conclusion, the package peraits fine observations to be made comparing different javelins and saril variations in athletic techniques using applied optimal control theory. The progras has been used as afi aif to coaches, researchers, teachers, students, manufacturers and, o! course, the athlete and is primarily used as an aid in develefing an understanding of this complex throwing event.

InTRODUCTION

A central feature in elite athletics is the problen of deteraining and eliainating errors in technique. This has two prerequisites, firstly there needs to be an optimen perfornance model to serve as a referencing system, and secondly variations from this aodel need to be assessed quantitatively and rectified. obviously the latter cannot be atteapted unless the former bas been developed. In throving events the ultinate perforaance paraseter, range, is a function of the associated release conditions since the projectile's path cannot be affected by the throver after release. During the airborne phase there are clearly defined gravitational and aerodynamic forces acting such that throving can be considered as an initial (release) condition problea and the differential equations that describe the trajectory of any throum implesent are of the fora:

$$
\dot{\{ }=\epsilon(\xi)
$$

where $\{$ at release ($t=05$) is equal to $\{(0)$ (HUBBARD and ROST, 1984).
From this it can be show that the complete trajectory, and therefore the range, of a throw implement is already deterained once the initial (release) condition $\xi(0)$ is chosen. The probles can be solved, and optim! release condicions found, if javelin flight can be accurately simulated. The state vector ξ comprises displacesents, anqles, velocities and angular velocities relating to the javelin at any specified tise during flight. Siailarly, $\{(0)$ comprises displacesents, angles, velocities and angular velocities at the instant of
release, and since these are all deternined by the thrower, there must be optimal sets of initial (release) conditions for each athlete which vill produce a maximem range.

Conputer simulations of javelin flight are nov a common feature in javelin research (e.g. BEST, BARTETT and SAMYRR, 1939; HUBBARD and NLAMAYS, 1987), although the vide availability of simulation softrare is not yet apparent. It is the objective of this paper to present an interactive javelin tlight simulation softvare package for use by researchers, sanufacturers, teachers, coaches and, of course, the athlete.

momition

The definitions that follow are based, unenever possible, on the motation and ayes systess standards put forvard by BOIKIN (1966) and the ROYAL AERONAOTICA SOCIETY (1967). All definitions relate to or about the javelin centre of gravity (C).

D Drag force; the resolved aerodynanic force acting parallel to the relative vind vector, V .
g Gravitational Acceleration.
Iy moment of Inertia about the javelin's body axes y axis (pitch axis).
L Light Porce; the resolved aerodynanic force acting perpendicular to the relative vind vector, \mathbf{v}; in 2-dimansional simulation this lies in the earth axes XY plane.
a Javelin Mass.
M Pitching Moment; Moment tending to rotate the javelin about its body axes y axis (pitch axis) in the Xz plane of the javelin body axes.
q Pitch Rate; the angular velocity component in the x p plane of the javelin body axes: In 2-dimensional siaulation $\mathrm{q}=0$.

R Range; borizontal distance from the $C G$ at release $(t=0 s, x(0)=0 \mathbb{D})$ to the point where the the javelin fizst touches the ground on landing.
t fime; $t(0)$ represents the instant of release.
V Javelin cc velocity with respect to air.
V_{R} Javelin oc Velocity with respect to earth.
V_{n} Moninal Velocity; the maximun release speed capability of a thrower at $\quad=35^{\circ}$ (athlete specific).
∇_{v} In this paper ∇_{v} represents the air velocity relative to the normal earth borisontal x axis at a beight of 1 n ; tailuind positive.
V_{X} The component of V_{k} along borizontal normal earth horizontal x axis.
V_{z} the component of V_{I} along the vertical normal earth vertical z axis.
$x \subset C$ co-ordinate in the normal earth x direction (forvards positive).
2 ©C co-ordinate in the normal earth 2 direction (upurards positive, unlike ROPRIM, 1966).
α_{k} True derodynanic λ agle of Attack with respect to air; the angle betreen the javelin's x (long) axis and the projection of V on to the noral earth $X 2$ plane.

II Angle of Attack vith respect to earth; as a except ∇_{I} is projected instead of ∇ (i.e. $\theta-\gamma$ in 2-dimensional simulation).
γ Angle of Climb; the direction angle of ∇_{K} relative to the borizontal plane of the nomal earth axes; $\gamma(0)=$ Angle of Release.

- Inclination angle; the attitude angle betreen the javelin x (long) axis and the horizontal plane of the nornal earth axes.
(0) as in $q(0)$ denotes a parameter value at the instant of release, $\mathrm{t}(0)$.
Dot as in \dot{q} denotes differentiation vith respect to time.
Dash or prixe as in q^{\prime} denotes a perturbation.
Sose of the more important variables for 2-dimensional motion are show in Pigure 1, where the above notation are conceptually siaplified.

Pigure 1: Some important release variables

FLICET SDMALTAN

an important assumption in present flight simulation research is that all javelin activity in flight occurs in a single vertical plane (nornal earth Xl plare), thus reducing the probles to two disensions. This assugetion is considered reasonable(BARTLETY and BRST, 1988; EVBBMRD, 1984).
a 2-dimensional computer simulation of javelin slight essentially consists of two stages. Pirstly, a complete set of aerodynamic farce and moment data for the relovant range of angles of attack and air speeds encountered in javelin tlight are required. The vertical plane aerodynamic model described by BEST and BARTIETT (1988, 1989) fulfils the 2 -dimensional criteria involved. The second stage of the computer tlight simulation involves a method for predicting javelin position's angles, velocities and angular velocities at any tive during the javelin's flight. There are six differential equations of motion to be solved (three first orier, y 20 and three second order, $y z \theta$, Dsing earlier definitions, these six differential equations can be expressed as eirst order by resolving, viz;

$$
\begin{aligned}
& \begin{array}{l}
y=V_{x} \\
z=v_{y}
\end{array} \\
& \theta=8 \\
& \theta=\mathrm{q} \\
& y=\gamma_{y}=-(\operatorname{Lsin} \gamma+\cos \gamma) / \mathbf{a} \\
& z=V_{2}=(L \cos \gamma-D \sin \gamma-\operatorname{mg}\rangle / a \\
& \theta=q^{2}=\mathrm{K} / \mathrm{I}_{\mathrm{y}}
\end{aligned}
$$

and for the above to be solved, four further equations are required since $L, D, M=L, D, M(V, a)$ and $\left.q=1 i \gamma, \theta, V_{w}\right)$ i

$$
\begin{aligned}
& \gamma=\tan ^{-1}\left(v_{z} v_{y}\right) \\
& a=a_{k}+\sin ^{-1}\left(-\sin \gamma^{2} v_{\psi} v\right) \\
& v^{2}=v_{v}^{2}+v_{k}^{2}+\left(2^{2} v_{v} v_{k}^{2} \cos \gamma\right) \\
& v_{k}^{2}=v_{z}^{2}+v_{z}^{2}
\end{aligned}
$$

The differential equations are solved numerically using the Runge-Rutia th order method (e.f. SCRACM, 1986) with i, D and n recalculated during each of the four steps, and all equations solved simultanecusly. Since $\mathbf{x}(0)=0 \mathrm{~m}$, Range can be expressed viz;

$$
-R=R_{\mathbb{R}}\left(V_{\mathbb{R}}(0), \gamma(0), a_{\mathbb{R}}(0), q(0), z(0), V_{W}\right)
$$

The above equation for Range reveals the user input requirements for javelin ilight simulations softrare.
The final assumption relates to the fact that an athlete throws at a different release speed, $V_{k}(0)$, for each value of angle of release, $\gamma(0)$. The speed/angle relationship used by the authors was calculated by replotting the data of VIITASALD and RORJJS (1988) and fitting polynonials based on the principle of parsimony, such that:

$$
v_{X}(0)=v_{N}-0.02925^{4}(\gamma(0)-35)-0.00223^{4}\left(\gamma(0)^{2}-35^{2}\right)
$$

SOFTHRE
The computer softuare presently runs on an Acom Archimedes 300 and 400 series wicrocomputer and will soon be available on PC based systems. The chosen programaing language is structured BASIC V since BASIC is the most popular and videly used programing language and the rost suited to the vide range of users for whom the software is uritten.

The main progran includes user directed intaractive keyboard inputs based on the equation;

$$
R=g\left(v_{g}, \gamma(0), a_{x}(0), q(0), z(0), \nabla_{v}\right)
$$

with an added inpert alloring a choice of IMM approved competition javelins including men's apollo 100n new rules javelin and ladies 600 g apollo aerodyne javelin. This section of the progran features a comprebensive melp section giving scientific and Don-scientific descriptions of each variable as vell as sets of realistic inpots to be used as a guide by the usar. Graphics diagrans are used as an additional aid vith, for example, the relevant variable (e.g. $g(0)$) fron Figure 1 tlashing then the respective paraneter valua is to be entered. If a paraneter value is entered that is outside the usulal range of valves ancountered in the javelin event the oser is given a caution and the option to enter a ney value for that variable. Mis is ane example of the numerous debugging procedures designed to avoid a progran crash. The most striking advantage of this section is that the user can assess the effects on range of samil changes in each release variable separately in a vay that is virtually impossible to control in the field, and indeed, assess small changes in athletic technique in an applied sense when used in conjunction with high speed cinematography (BBST, 1988).
release paraitiers

Pigure 2: Post-flight javelin simulation graphics
Pollowing the user input section, colour graphics reveal a real-tibe simulated javelin flight based on the user supplied release parameter data, culainating in information described in pigure 2. Plight graphics include a vindow zooning in on the javelin to shou its inclination and the direction of V_{k}. Finally, ellight graphics are folloved by options to duyp information into colour or black and wite printers.

Since range can be accurately simulated and the release variables $\gamma(0), a_{k}(0)$ and $q(0)$ are optiad variables (BEST, BARTLETY and SANKER, 1989), there must be an optimal set of these variables for any given set of $V_{N}, z(0)$ and V_{w}, such that when oifferentiating vith respect to Range (R);

$$
q(0)^{\prime}=u_{x}(0)^{\prime}=\gamma(0)^{\prime}=0
$$

The optizisation algorith chosen for this sottvare is the DSC method of Davies, sram and Carpey (B0X, Davies and sman, 1969). This rethod, an extension of and superior to Rosenbrock's method, is an unconstrained linear, direct search optinisation algorith (unconstrained because the simulation does not predict flat landings in either zen's or ladies javelin throring, the latter being a linitation of the research being looked at presently; BEST, 1988). DSC was cbosen in preference to the wore comson and quicker Powell's method because powell's metbod, wile being most efficient in the region of the optimus were the function (R) can be vell approcimated by a quetratic, can prove inefficient for compler nonsymetrical surfaces and when the starting point is a long vay from the optimun. The latter is certainly a possibility since the initial guess or starting point is tron the user input data. DSC overcones these possible inefficiencies and is programed vithin the softiare in order to mocupass n-dimensional opthisation probleas in auclidean vector apace, and continvously usimg ongoing infurnation to redefine mutually orthonanal direction vectors via Grar-schaidt orthonoralisation relationships (BIRBCOP? and MCTARE, 1966), this esebles DSC to cope vith the ridges and skews of more complex surfaces. Additional softvare programed in MSI Portran 77 is also available alloving 1-disensional contore maping and isometric plotting using WGG libraty routines and the authors' extensive data lieraries.

LIFT/W

Figure 3: Lift, drag and pitching mosent profile (Pig. 2 release data)
The optinisation routine is folloved by a cboise to re-ran the original siaulation in real tive, input ney release data or to choose an extensive graph plotting section. The latter allows observation of various flight characteristics using the authors' oun 5 -point, colour coded graph plotting routines. Por example, Pigure 3 shous the aerodynaic forces and moments acting during the flight described in pigure 2, while Pigure 1 shovs pitch rate variations during Elight, eaphasizing the now familiar constant negative (nose down) rotation of the men's nev rules javelin. The graph section is an essential prerequisite for researcher, coach, teacher, student, athlete and manufacturer since it can be used to develop an urderstanding of this complex aerodynaaic and
mechanical throwing event.
PTTCH RATE (deg/s)

Figure 4: Pitch rate profile (Pig. 2 release data)

cuctusions

A javelin Elight simulation scfodare package bas been developed as a reseach/leaming toc: for coachaj, athletes, research scientists, manuacturers and university teaching of this complex athietic event.

The softuare includes real-tive flight graphics, a comprehensive HEP section, optivisation o: athiete specific release variables, weasured aerodynamic data and graphical flight analysis section.

The main advantage of the procraa is that it can be used by the coach to assess on computer what is wrong with aspects of an athlete's technique without putting those athletes under potentially hazardous experigentation in the field.

RETERENCES

BABTLITT, R.M. and BEST, R.J. (1;98) The biomechaniss of javelin throwing: a review. J.sport sciences 6, 1-33. BEST, R.J. (1988) Men's Hey Rules and Ledies Lavelin : Aerodymaics, Flight Simulation and Biomechanial Considerations. Unpublished Maste:'s Thesis, Jniversity of Salford, UR.
EEST, R.J. and BAKTLEM, R.K. (1588) Aerodynasic characteristics of nev rules javelins. In Biomechanics in

BEST, R.J. and BARTLETY, R.K. (1989) Ladies javelin: aerodynamics, flight simulation and bionechanical considerations. In Biomechanics in Sport, Hellenic Sports Research Institute, Athens, 88-103.
BEST, R.J., BARTLETY, R.K. and SAWER, R.A. (1737) Compiter predicted optian release characteristics for varying ability wale javelin throwers. In proceetings 0 : the KII International Congress of Biomechanics, SCLA, number 270.

BIRKHOFP, G. and MACLANE, S. (1965) A Survey of Modern Algebra. Mackilian, Mev York.
BCX, M.J., CAVIES, D. and SWANN, W. H . (1969) Hon-Linear Optimization Techniques, Oliver and Boyd, Edinburgh.
BORKIN, H.R. (1956) A scheme of notation and nomenclature for aircraft dyamics and associated aerodynamics. RAR (Royal Aircraft Establishment) Technical Report TR 66200, parts 1-5.
HITBARD, X. (1984) Optimal javelin trajectories. J. Biomechanics 17, 717-787.
HUBRARD, M. and ALAAYS, L.W. (1987) optimal release conditions for the new rules javelin. Int. J. Sport Biowechanics 3, 207-221.
GUBBARD, M. and ROST, B.J. (1984) Simulation of javelin flight using experimental aerodynamic data. J. Biomechanics 17, 769-776.
RCYAL AERCHNTICAL SCCIETY (1967) Engineering Sciences Data Onit (ESDJ Aeronautical Series), Item numbers 67001, 67002, 67003 and 67037. Royal גeronautical Society, London.
SCRATON, R.R. (1986) Basic Mueerical Methods. Edvard Arnold, London.
VITASC, J.T. and TORJJS, T. (1988) On-line measurement of tinesatic characteristics for the javelin. In Biomechanics XI-B (edited by G. de Groot, A.P. Hollander, P.A. guijing and G.J. yan Ingen Schenay), Free Oriversity Press, Austerdas, 582-587.

nctuciledgapmis

The athors wisa to acknouledge the Einancial support of the 8ritish Sport Council, without which this research mould not bave been possitle.

