BRACHISTOCHRONE (I.E.,SHORTRST TINE) IN SKIING DESCENTS

TWARDOKES, G.R.
University of Nevada-Reno
Reno, Nevada
USA

ABSTRACT

tibe needed to traverse on skis a straight line betimen two points h and 8 marked on the ski slope vas compared to to the tive needed to carve a ski tum which folloved a cycloid curve connecting the \mathbf{A} and 8 points.

Descents over the longer path outlined by the cycloid curve were faster than the descents over straight line traverses in 14 out of 18 tests. In each of the ras wich procedured sborter time on the traverses considerable skidding of the skis (instead of the desired carving) was observed.

The Brachistochrone prediced by the calculus of variations indeed yield a path which the skier descended in a minimus time.

The purpose of this study yas to compare the time needed to traverse on skis a straight line between points A and B to the time needed to carve a ski turn uhich folloved a curve connecting the A and B points. (Pig.1)

Figure i: Slope in the experiment (not to scale) Y axis is horizontal and the X axis is along the fallline.

Our intuition suggests that the fastest line connecting tro points on traverse is a straight line. For example Dan Bean (national coach) in an article, describing "Pundasentals of Giant Slalon" in American ski Coach, November 1987, p. 12 states:
There is no argument against the fact that the fastest vay to get from point A to point B is a straight line." Numerous ski coaches make sinilar statements describing descents at an angle to the fall line.

However, variational calculus shous that the brachistochrone for a passage of a particle sliding vithout friction from A to B under the force of gravity is not a stright line, but a cycloid curve. (Fig.2)

Figure 2: Common cycloid curve a path traced out by a point on a wheel that rolls along a straight line.

In tact the theory of the cilculus o! variations bad its beginning in the solution of the brachistoctrone probles. It vas first solved (theartically) by a sviss scientist, Johan Bemoulll, alrady in 16\%, (and pertaps. as re-discovered by the Sviss hational tean of today? Seile!)
to the beat of ay trouledige the first controlled experiments, atressing the brachistochroce problea in real stling situation, vare performad in 2988 by our research toas.

SLOPE ANO SUBRETS

The experimat vas partornd on a $30-10$ dagrue slope at Sgay Valley(April 13, 198t). The slope vas salted. fising equifwent was made by santhern Cross Computers. The straight traverses and cycloid curves vere eartad vith the colour dye. Actual alding on the straight lines and on the carves was erecuted by three experienced skiers. All subjects osed slalom-type skis.Steve, $154 \mathrm{lb}, 70 \mathrm{~kg}$ skis 250 ca . Menta, $114 \mathrm{lb}, 52 \mathrm{~kg}$ skis 195 ca . Sean, 194 lb , skis 88 m 205 ca . The start vas acoouplighed by using a gravity start (froe a stand-still) procedure.

THP RESTHS

Tast III

PAIR \#3

Run\#1*	Steve	5.83	$(+) 5.84$
	Sean	5.91	5.67
	Alenka	6.14	5.60

Notes: All times in seconds. Because of rain and strong wind there was only one run in Test III.

COMCLDDIN REARCS
When the slope vas prepared for the experiment numerous bystanders said: "It will never work!" - fortunately, it did. Specifically the experiment was succesful in 14 out of 18 runs. Most of the tive the cycloid curve produced shorter times than the straight line. In four runs the shier was faster on the straight line than on the curve. In each of the unsuccesfui rus both the skier and and the observers noted considerable skidding of the skis instead of carving (for carving-skidding line see Fig. 3).

Pigure 3: for the Brachistochrone to be effective a carved track, i.e., a track vith ninimu skidding is needed as in Pig.3, A. Skidded track wich followed the cycloid curve as in Pig.3, B produced slower times than a straight line of traversing descent.

In this brief report many facts had to be left out, and vithout a doubt many more remain to be discovered. If in the future the whole truth emerges, will it be an extension or a contradiction of the story I told? - a zen master could not drean up a finer conundrua!

His Popath

The slope is a plane thict makes an angle(d) to the borizontal plane. The Y-huis is borizontal and the I-NXIS is along the fall line. The equation of the cycloid curved from origin $(0,0)$ to the will be:

$$
\begin{aligned}
& Y=\frac{1}{4 G C \sin }(1-\cos 0) \\
& Y=\frac{1}{4 G C \sin }(0-5 D I \pi)
\end{aligned}
$$

When G is the acceleration of gravity, C is a constant, and D is a parameter in the interval $0<\sigma<O_{1}, C$ and 0 are calculated fron the equations:

$$
\begin{aligned}
& x_{1}=y\left(O_{1}\right) \\
& r_{1}=y\left(O_{1}\right)
\end{aligned}
$$

Fron the formulas one can deduce that the forn of the curve does not depend on the slope angle but the time of the passage does. Friction is neglected in the presented calculations.

However, modern ski bases are evidently so slick (coefficient of iriction as little as 0.02) that they reduce friction enough to bear out Bernoulli's theory.

THE CURVES
The curves vere calculated and graphed at the Oniversity of Oppsala, Institute of Theoretical physics, uppsala, Sveden and prasented in Figure 4.

Figure 4: Kinimue time curves used in the experiment (neter units).

oiscussion

Casual analysis may consider the advantage of the curvilinear path which at the outset of the descent is closer to the fall-1ine (than the straight traverse line), affords wore acceleration and therefore wore velocity to start vith. Bovever, this observation most be weighted ageinst the advantage of the shortest distance of the straight traverse pati possacses. It this point intultion can so loogar be belpetul and there ranims only the mathenatical methot.

The sathenatical solution to the brachintoctrone is vell know. It was pablisbed by the two Bernoulli brothers, Bevan, and Laikaiz, althougthe tecmiques at arriving at the solution vere quite different. Today virtunlly ewny text of clasiol dynaics or variational calculus deals vith the brachistonechrona problea in theory, but application of this theory to sparts is rare.
the enpirical resolts obtained in this research suggest a practical advice for competitive skiing; the shortest line of descant betwean the gates may not be the fastest.

the pesumer tel

George Trardokens ph.D. Exercise Science laboratory Dniversity of Mevada-perso

Rolf Paulsson Ph.D. Institute of theoretical Physice Oppsala, 5veden

Alenka Vrecek, Sean Malkerly, Steve Gould, and David Leer, all experienced instuctors coacbes and racers.

