A BIOMECHANICAL ANALYSIS OF CONVENTIONAL AND NON-CONVENTIONAL BICYCLE PEDALING RECHANISNS

RIDGWAY, M.
University of Texas-Arlington
Arlington
ABELBECK, K .
Design Engineer
Keiser Sport Health Equipment
Fresno
USA

The use of the bicycle artends far beyond modern recreation and sports racing events. Bicycle ergometers are videly used as testing devices to deteraine aerobic fitness levels and cardiac function. over the past several years, pedal-povered vehicles and stationary bikes have increased in popularity. This has come about as a result of an increased public avareness of the bealth benefits of cardiovascular conditioning, as well as providing an alternative fora of transportation. Tbe latter deals vith the development of the buman powered vehicle (HPV) where efficiency of locomotion is of chie! iaportance. The purpose of this paper is to study the efficiency of a conventional circular pedal motion (CPM) bicycle cyclist. Patello-femoral force is a contributing factor to chondromalacia-patella (Dickson, 1985) and is a concem in both locomotion and exercise/rehabilitation.

Research investigating the forces applied using conventional CPM systeas is extensive (Gregor et al., 1985; Davis and Bull, 1981; Bull and Davis, 1981; Soden and Adeyefa, 1979; Hull and Jorge, 1985; and Hevailler et al., 1988). Reported movement patterns and applied forces at specific pedal positions are relatively consistent between studies. The less popular and less available MCPM systea bas not been studied extensively by the research community.

NETHOSS

The CPK systen bike vas made by Onivega vith toe clips. The bike vas mounted on a stationary trainer to allow video taping of simulated riding. The MCPK systen was the Menax Tramsbar Porer bycicle. This systea has two ratcheting sprockets, one on each side of the rear tire. one end of each of two chains is attached to one end of a pair of levers vith pedals on the opposite ends of the levers. The levers reciprocate via a cable connecting the free ends of the chain. Because the chain cannot tolerate a coapression along its long axis, no tension can be created by pulling the pedals up. No toe clips were needed because then one pedal is moved down the other moves up. The NCPM system bicycle vas mounted on a motor driven treadmill to provide a riding simulation, and a shuttered video casera vas used to sila the subject coapleting ten stroke cycles on each systea. Video prints vere made at approximately 0.45 rad intervals of crank rotation. A theoretical sodel was developed and applied to both systems.

Joint sanent arms were deterined for the right ankle, knee and bip by analyzing x-rays of the subject's thigh, shank and foot segments. Instant centers of rotation were deternined by the use of hoire fringes (Gertzbein, et al., 1985) and respective moment arms were measured fron the x-ray fila. These measurements are necessary to deteraine the work done by antagonistic muscle groups spanning wore than one joint. This condition is referred to as Lombard's paradox (Lombard; 1903; Gregor, et.al., 1985). The muscles involved are the gastrocnemius, responsible for knee flexion and plantar flexion; biceps femoris, semiseabranosus, and semitendinosus contributing to to mee flexion and hip extension; and the rectus femoris wich is a knee extensor and bip flexor.

The contribution of each of these muscules ras deterained by estimating each muscle's maximum length of shortening and the amount of tendon displacement along the long axis of the auscle, as it moves from its resting length to its shortened length. Moaent arss of the tendon vere plotted against joint angle. The sum of the integrals of the equations fittimg those curves was deterained, from resting (o rad) to the two respective joint angies. An assumption was wade that muscle vill shortan $2 / 3$ of its resting length. The only muscle where tension was not exerted by the contracting auscle was the gastrocnemius at the 6^{\prime} past top dead center (TOC) crank
position in the CPM syatel bicyele.
Cross sectional areas of the two-joint muscles relative to the total cross sectional aro of the total mor mascle movers at the hip, tree and ankle vere deternined. the following assuptions vere eade: (1) the gestrocnanius temion on the postarior femor vas assigned a tansion of 608 of the total force exerted by the a jor plantar flerors. (2) the rectus femoris provided 258 of the tension exarted oy the me extensors. (3) the
 times as moch force as the seo of the long bead of the biceps femoris, seaitendinosus and senirembranosus.

The rodal utilized for ideal force apllication for the CPM systen is sinilar to one used by soden and ndeyefa (1979). meir "ideptondition did not allow for the shear forot exarted by the foot con a padal uquipped vith toe clips. Thy suggested that this tarce vas not significast and could be oaltted. Masurement techniques nsed by othar imestigators (luall und Jorye, 1985; Davis and Bull, 1981; Bull and Davis, 1981 and neviller, et al.,198s) indigate othervise. A mean peak value of the abear forces relative to normal pedal forces was deteninad to be $1: 3$ resplectively. obeervad crack an torque approximatas the following curve (祭 1) where I is the vertical force and is the displacesent cloctvise begiming at πx.

$$
\begin{equation*}
r=Y \sin \theta \tag{1}
\end{equation*}
$$

The wort done in one malf pedal revolution was detenined using ane artitrary unit of force. me crant ara was laca long but standardized to 1 length unit to sizplity the calculation. total work done is deternined by solving the integral:

$$
\begin{align*}
& U_{T}=\int_{2 a u}^{\pi} \sin \theta d \theta \tag{2}\\
& U_{T}=0 \tag{3}
\end{align*}
$$

The morisontal component is the shear torce applied to the pedal. The torce/ position curve was the asolute value o! a cosine carve o! $1 / 3$ the amplitude of the peat vertical torce. The total wort done can be broken down into the folloving vertical and borizonta! cosponents:

$$
\begin{align*}
u_{1}= & 2 \int_{0.3 \frac{217}{\pi / 2} 1 / 3 \cos \theta d \theta}^{0} \int_{0}^{\pi / 2} \sin \theta d \theta-2 / 3 \int_{0.3217}^{\pi / 2} \cos \theta d \theta \tag{4}
\end{align*}
$$

Rigure 1: Tongue/crant Angle Corve.

Piqure 1 sbow the corgmponition curve lor the vertical and borizontal components. The sum reisticnstip

following equation:

$$
\begin{equation*}
r=z \sin \theta \tag{6}
\end{equation*}
$$

The work done in one pedal stroke of each respective pedalling systen vas deterained by solving the integral:

$$
\begin{equation*}
U_{\mathrm{v}}=\int_{e_{0}}^{\theta_{2}} z \sin \theta d \theta=2 a u \tag{7}
\end{equation*}
$$

Using the linits of the crank stroke for ϕ_{1} and ϕ_{2} as 1.431 and 2.758 respectively, the constant 2 (peak torque) vas solved.

$$
\begin{equation*}
\left.z(-\cos \theta)]_{1.431}^{2.758}\right)=2 \mathrm{au} \tag{8}
\end{equation*}
$$

$$
z=1.875
$$

In both systems the work done in lifting the weight of the leg yas onitted because that potential energy is released on the next stroke. Vertical travel of the leg's was considered not significantly different betreen the CPM and MCPM systeas. Forces vere solved conforing to the model described. Absolute pedal angle vith respect to the borizontal was used in deteraing forces. Because the MCPM system bad no toe clips, the assuaption vas made that all forces applied vere normal to the pedal, and a frictional force vas exerted to bold the toot on the pedal when sazll absolute angles $\& f$ existed. Bquation 11 vas substituted for P_{y} (vertical force) in equation 10. P_{N} (force normal to the pedal) was solved for using equation 12 . Pigure 2 shows the HCPM forces. Note that d is 1.757 times the one length unit used in the CPM system (Eq 1).

$$
\begin{align*}
& \Gamma=1.875 \sin \theta=D F_{Y} \sin \theta \tag{10}\\
& F_{n} \cos \theta=F_{r} \tag{11}\\
& F_{n} 1.875 / 1.757 \cos \varphi \\
& F_{n}=1.067 / \cos \varphi \tag{12}
\end{align*}
$$

Figure 2: NCPM Pedal porces.

The CPM syster force components are solved for in a sinilar fashion axcept that noy both shoar and nornal forces exist. Equation 13 was used to solve for the vertical force applied to generate the torque necessary at the crank an.

Figure 3 details the normal and shear components of the vertical forces $F_{\mathbf{V}}$.

Pigure 3: CPM Pedal Porces.
Equations 14 and 15 conpensate for the absolute pedal angle. Bquations 16 and 17 are equations 13 conbined with 14 and 13 comined with 15 respectively; used to solve for normal vertical $P_{\text {WV }}$ and shear vertical $F_{S V}$ forces:

$$
\begin{gather*}
\text { FOI }: 0<\theta<\pi \\
F_{z}=F_{v} \cos \varphi \tag{14}\\
F_{z}=F_{v} \sin \varphi \tag{15}\\
1 / d-1 / 3 d \tan \theta=F_{z} \cos \varphi \tag{16}\\
1 / d-1 / 3 d \tan \theta=F_{z} \cos \varphi \tag{17}\\
F_{r v}=\cos \varphi / d-\cos \varphi / 3 d \tan \theta \tag{18}\\
F_{a v}=\sin \varphi / d-\sin \varphi / 3 d \tan \theta
\end{gather*}
$$

The borizontal force \mathbb{P}_{B} and components P_{HH} and $\boldsymbol{P}_{\text {S }}$ were deterained in the sase eanner with the exception that the direction of the force changes at $0=\$ / 2$. Pollowing the convention established:

Since:

Table 1 presents the algebraic sun of all shear and nomal forces. Normal and sbear forces vere calculated for the CPM and MCPM systens. Lines were dram normal to the pedal and parallel to the surface of the peda! tirough its axis of rotation. External moments were weasured from the perpendicular distance from the line to the center of rotation for each of the three joints. A positive counterclockvise sovement convention was established.

TABLE 1
Normal and shear forces for CPM systen bicycle at various crank angles. (Mormalized for crank length of I unit).

for $\theta:$	$0 \leq \theta<0.3217$	$0.3217 \leq \theta \leq \pi / 2$	$\pi / 2<\theta \leq 2.820$,	$2.820 \leq \pi$
$F_{0}=$	$\sin \varphi$	$\sin \varphi-(\sin \varphi / 3 \tan \theta)$ $+\cos \varphi / 3$	$\sin \varphi-(\sin \varphi / 3 \tan \theta)$ $-\cos \varphi / 3$	$-\sin \varphi$
$F_{4}=$	$\cos \varphi$	$\cos \varphi-(\cos \varphi / 3 \tan \theta)$ $+\sin \varphi\}$	$\cos \varphi-(\cos \varphi / 3 \tan \theta)$ $-\sin \varphi / 3$	$\cos \varphi$

 a secend internal kno sonant.

 forces, other than gravity, acciang on the las

$F_{\text {RM }}=$ Reaction Force (Normai)
$F_{R S}=$ Reaction Force (Shear)
$F_{\text {Re }}=$ Force Rectus Femoris
$F_{\text {MO }}=$ Force Hamstrings (at oigin)
$F_{H}=$ Force Hamstrings (at insenton)
$F_{P L}=$ Force Pateliae Ligament
$F_{G H}=$ Force Cuadriceps Tendon
$F_{G}=$ Force Gastocnemius
$F_{C}=$ Force Catcaneal Tendon
$F_{G M}=$ Force Gluteus Maximus

Figure 4: Porces applied and sign convention st soments about the wip, kees and antle fexcleding body veight
The resultant soment about each joint was iotenined at the selected joint angles. These vaues wera plotted against joint angle and integrated over the intial to tinal joint angle values, taking into acoont ang
 were calculated based on the tension values in the guadriceps teadon and the patellar ligament. 7nis orce is the algebraic sum of the products of tendon and ligament tensions and the cosine of tha angles eack of these vectors wake with a line that passes through the point of contact of the patelia and fewur and the intersection of the to force vectors. (Ellis, et al, 1980), The su of these twe vector components wes tiken as the resultant compression patellofenoral force. These values were plotted and fitted with a sooost carve ard integrated along the range of eotion ot the joint.

RESULTS
The total work done by the cuscles of each joint is listed in Table 2. Pigure 5 iliustrates the stroxing sequences in CPM and NCPY. The total work produced with the d now equal to 18 cu put into the oriyina mort equations 2 and 3 yielded a wort product of 36 a (ca) for each $1 / 2$ revolution. The data showe a 7 if iscrease in the amount of work done in the conventional CPM systea bicycle as computed to the WCPs systea. nete conventional

CPM systen attributes 39.48 of the work produced by the mascles is due to Lorbard's Paradox as compared to 26.98 in the BCPM systen.

TABLE 2
Huscular work required to do 36 au ca of work for CPM and MCPM systems.

Joint	CPM (au $\cdot \mathrm{om})$	(Work Done)	NCPM (au $\cdot \mathrm{cm})$	(Work Done)
	Value	\%Total	Value	\%Total
MIp	34.82	58.60	23.47	47.00
Knee Ext	14.38	24.30	15.32	31.10
Knee Flex	2.63	4.40	00.00	00.00
Ankle	7.55	12.70	10.46	21.20
$\Sigma(\mathrm{au} \cdot \mathrm{cm})$	59.38	100.00	49.27	100.00

Pigure 5: Stroking Sequences in CPM and MCPM.
Figure 6 shows the range of motion at the hip, bnee and ankle for each type of pedal motion. This decrease in the joints use of available range of motion partially explains the smallet anount of antagonistic muscia action.

Figure 6: Joint Ranges of Motion for CPM and NCPM Fedalling Systeos.

A comparison vas made between these tro bicjcle gystass based on the amount of vork done relative to the crossectional area of the miar muscles moves involved. Ilagehoef's data (1987) vere used to deternine total crossectional area of the najor muscle movers for the joints analyzed. The data are recorded in fable 3.

TABLE 3:
Hork output in CPR and sex systams.

Jolnt Action Crossectional Area (cm^{2})	\% of Total	\% Work Done CPM	Δ	\% Work Done NCPM	Δ
Hip Extonsion 109.70	37.00	58.60	21.60	47.70	10.70
Knee Fioxion 69.50	23.40	4.40	19.00	00.00	23.40
Knee Extenston 71.10	24.00	24.30	0.30	31.30	7.10
Ankle Plantar FI. 4.62	15.60	12.70	2.90	21.20	5.60
Σ			43.80		46.80

Patellofemoral forces vere analyzed for one stroke cycle for both CPM and MCPM. the area under the curve for one stroke cycle was 2.486 total units vith the MCPM syster and 2.191 total mits in the CPM systea. mis represents a 11.98 difference betseen the CPM and MCFM systens. Wote that this force is applied through 0.87 rad. angular displacesent on the MCPM systea or 2.857 units force/rad. knee displacement and through 0.56 rad (3.91 units force/rad knee displacement) tor the CPM systen. There is a 27.08 decrease in patellofemoral forces per unit of area contacted in the MCPM in comparison to the CPM system.

DISCUSSION

The primary findings of this study suggest that a more efficient system of producing work may exist vith the MCPM system as compared to a conventional CrM systea. At very high pedal velocities this increased efficiency in the MCPM system may be lost because rotational kinetic energy is stored in the crant, pedals and lover extrenities in a circular pedaling motion. In the MCPM systez the ass must be accelerated and decelerated in order to change direction at the beginning and end of each stroke. If the forces required to cause these decelerations comes from muscle pover, then efficiency is lost. It is possible that this energy could be transferred to the locomotion mechanism of the bicycle vithout exerting muscular force to change the direction of the movement. To alleviate this potential problen, very high pedal velocities should be avoided. As the pedal force is increased, the absolute patellofemoral force per pedal stroke also increases. If the pover output required can be achieved by a low pedal force and velocity, the increased efficiency, found in this zodel, may bold true.

With respect to a mode of exercise, where prolonged high power outputs are not the issue the NCPM systea may offer a practical alternative. Por persons vith a linited bip or knee range of motion, chondromalacia patella, or other liniting conditions, this pedalling system may prove advantageous. It is conceivable that a lou mass lever driven systen could be developed in order to satisfy both populations.
Wen using a bicycle for transportation and exercise, the elinination of detrimental stressed is of obvious benefit. The data suggest that a 26.91 decrease in force per unit of crossectional area exists at the patellofemoral joint in the MCPM in comparison to the CPM systen. The larger more sporadic patellofemoral forces calculated in the CPM as compared to the MCPM systen may also contribute to improper patellar tracking and excessive patellofenoral forces. Both of these my contribute to chondroaslacia patellae. The data also suggest that both systess could pasibly be improved by repositioning the pedal an or crank to more equally use the body's natural strength poteatial. The advantage of a push-pull lever MCPM systen offers a plausible alternative to conventional pedalling systeas.

XGPREMCES

LAVIS, R.R. and BiJL, M.L.(1981), Measurement of pedal loading in bicycling: Il analysis and results, J. Biomechanics, 14, 857-872.
DICZSON, J.B. Jr. (1985) Preventing overuse cycling injuries, The Ebysician and Sports Yedicine, 13,(10), 116-123.
EldiS, M.I.; SERDHOM,B.B. ; MRIGRS, V. and DOMSOH,D. (1980), An evaluation of the ratio between the tensions along the quadriceps tendion and the patellar ligament. Pagineering in Hedicine, 9,189-194.
GERTZBEIM, S.D.; CEBN, K.H.;TILE, M.; SELIGMN, J. and CAPASOORI,A. (1985), Moire patterns: an accurate tecinique for detervination of the locus of the centers of rotation \mathbf{x}, J. Biomechanics, 18, 501-509.
GREGOR, R.J., CAMANGE, P.R. and LAPORTOMR,M., (1985), Xnee-flexor moments during propulsion in cycling - a creative solution to Lombard's Paradox, J. Biomechanics, 18, 307-316.

HITL, M.L. and JORGE, M. (1985), A method for biomechanical analysis of bicycle pedalling. J. Biosechanics,18,631-644.
HULL, M.L. and DAVIS, R.R. (1981), Keasurement of pedal loading in bicycling: I Instrumentation,14,843-856.
LOMBARD, M.P. (1903), the action of two-joint muscles, A n. Phys Bd. Res.,8,141-145.
NEMHILLER,J; HULL,M.L. and ZALAC,P.R. (1988), A mechanical decoupled two force component bicycle pedal dynamometer. J. Biomechanics,21, 375-386.
PLAGENHOEP, S. (1987), Anatomy for Rehabilitation, Bennet Ergononic Labs, Largo, PL, 76-80.
SOOEN, P.D. and ABEYETA, B.A. (1979), Porces applied to a bicycle during normel cycling. J. Biomechanics,12,527-541.

