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INTRODUCTION

Thisstudy addressed the problem of thedifferentiation processof noisy
human motion data. Thefinite difference method was thefirst approach to
replacethe graphical method in obtaining smooth kinematic dataand their
derivatives. The finite difference method gives the derivatives estimates,
smoothing thedataat the sametime, but Widuleand Gossard, (1973) pointed
out that the accel erationsweretoo noisy and with high oscillationsfor direct
application.

Winter, Sidwall, and Hobson, (1974) obtained a better approximation
for the second derivativein a human locomotion after filtering their data
with a low pass second order Butterworth filter. Pezzack, Norman, and
Winters, (1977) compared the calculated accelerations from finite
differencesafter digital filtering by asecond order Butterworth filter, with
accelerations from Chebyshev least squares polynomials followed by
polynomial differentiation. Pezzack et al. (1977) demonstrated the higher
quality of the Butterworthfilter comparing the cal cul ated data with analog
real data obtained with an accelerometer. However the uncertainty of the
cut-off frequency choiceisadrawback when someoneisdealing withdigital
filtersor with frequency domain methods. The process of trial anderror in
order to find theright set of filter parameters could be tedious.

Cubic splines gave a better estimation of higher order derivativesthan
orthogonal polynomials when applied to force predictions (Zernicke,
Caldwell, & Roberts, 1976).

Splinesrequireanumber of parametersto beestimated beforean analysis
and thework of Wood and Jennings (1979) was an attempt to automatethe
trial and error procedure. The work of Dierckx (1975) on b-splinesand its
application in biomechanics (Soudan & Dierckx, 1979) established the
suitability of splinesin human motion analysis. Another method that uses
b-splines is the Generalized Cross Vaidation Criterion (GCV) (Utreras,
1981) that Woltring (1985) used to analyzePezzack et al.’s (1977) dataand
Vaughans’s (1982) data.
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Fourier anaysis has been employed to describe a measured motion and
to examine the frequency domain of human movement., Cappozzo, L eo,
and Pedotti, (1975) computed the harmonics of displacement data with
different sampling intervals until the
variance of the residuals approached a minimum difference and then
calculate explicitly the velocities and accelerations from the Fourier
coefficients. Jackson (1979) aso estimated the cut-off frequency a the
point where the variance of theresidualswas ~ minimum. Bar, Eden,
Ishai, and Seliktar (1979) estimated the lowest cut-of f frequency wherethe
variancedf thefilteredsignal fromtheorigina wasthesame withtheknown
error amplitude.

Thedeinestionaf thosespectrumfrequenciesthat accountfor the majority
of asgna variancehasacrucial rolein gpplied biomechanics. Thepurpose
of thisstudy wasto proposea new smoothing techniquefor human motion
datausing a Discrete Fourier Transformation{DFT} that uses astatistical
criterionfor theestimation of thecut-off frequency. Thissmoothing method
was congtructed via a DFT of the displacement data combined with.a
regressonanaysis. DFT and regresson method (DFTR) givesameaningful
way toidentify thisfrequency through astatistical procedure,theregresson's
level, in contrast with the power spectrumgraph (PSG) method that applies
the "eye-balling™ method. A secondary purpose was to compare this
aternativemethod with threeconditionsrepresentingcharacteri stic human
movements.

METHODS

DFTR transforms the data from the time domain to the frequency
domain. The new constructed dataformed an orthogonal basisof variables
that they could enter a regression analysis for the evaluation of the
statistically significant variables. Each variable represented a Fourier
frequency, hence the valid frequenciesand an optimum cut-off frequency
could be estimated.

The DFTR method does not completely eliminatethe trial and error
procedurewhichis acharacteristic of the most smoothing techniques, but
it gives afixed way to deal with it. After the regression choosesthe valid
frequenciesfor acertain i level the researcher can decideif the smoothing
is acceptableby examiningthefitting of thedatacurveand the smoothness
of thederivatives. A moredtrict 2 level usually canimprovethe smoothness
of thederivatives. Furthermore, theresearcher can either forcesomeof the
frequenciesout of theeguationto increasethedegreeof smoothingor force
someof thefreguenciesinto the equation to increase the degree of fitting.
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The maximum accepted frequency is considered the cut-off frequency.

The PSG of thedatarepresentsthe squares of the Fourier coefficients
with respect to frequency. Theflat part of thesignal frequency spectrumis
assumed to be connected with random error (Press, Teukolsky, Vetterling,
& Flannery, 1992). In this case, the squared amplitudes of the high
frequencies beyond the lowpass signa cut-off frequency should form a
nearly straight line. Thefirst estimationof the cut-off frequency would be
exactly that point where the flat part of the graph begins. Even a crude
approximationcan give good results, when appliedto data, asthe obtained
results differ from the optimal resultsby an amount that is second order in
the precision to which the optimal cut-off frequency is determined (Press
etd., 1992).

The matrix language of SPSSx was used to implement the DFT and
regression method and the power spectrum graph method. Two routines
written in fortran77 by Dierckx (1975) and Woltring (1985), were used for
theb-splinesand GCV methods  respectively. Thefour methodsa) DFTR,
b) PSG, c) b-splines, and d) GCV were evaluated under four different data
sets. The algorithms were evaluated with four applications: @) Pezzack et
al.’s data(1977), b) datasimulatinga projectilemotion,c) data simulating
acounter motion, and d) datasimul ating atracking motion. Pseudo-random
error with normal distribution of 0 mean and 0.01 standard deviation
(Lanshammar, 1982) was superimposed to the synthetic data.

The mean squareerror (M SE) and the mean signal to noiseratio(SNR)
of the smoothed data were used as indexes of comparison among the
algorithmsfor the three synthetic data sets. Theresultsfrom Pezzack’s et
al. data (1977) were compared with
previoudly published results (Soudan & Dierckx, 1979; Wood & Jennings,
1979; Lanshammar, 1982) for the same data set.
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RESULTS AND DISCUSSION

Pezzack et al.’s (1977) databy natureweregood (Lanshammar, 1982)
and all algorithms had reasonably fitting to the data. Comparison of the
DFTR acceleration curve (see
Figurel) withthereal accel erationcurve(Pezzacket. al 1977; Lansharnmar,
1982) demongtrated the ability of the algorithm to preservethe peaks and
shapedf thecurve. Theoscill ationsbetween one and twosecondsarelarger
than the fluctuations of the real curve, but the shape of the acceleration
curve functionsin the same fashion with the real curvefor therest of the
sampling time, even at the boundary points.

DFTR and PSG had larger M SE than the b-splinesand GCV methods
for the counter and projectile motions. The b-splinesand GCV methods
estimated closer the real data and thereal derivatives. The b-splines had
the highest SNR (132.9) and it aso had the smallest MSE (0.588) for the
counter motion accel erationdata; the GCV had the highest SNR (83.6) and

Figure 1. DFTR estimated acceleration datafor Pezzack et al.’s
data (1977).
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it aso had thesmallest M SE (0.0002) for the proj ectilemotion acceleration
data, Theseresultssuggest that b-splinesand GCV aresuitablefor projectile
motions; whereasthe DFTR and PSG should not be used with thesetypedf

motions. Thefrequency domain methodsfail ed to giveagood approximation
duetotheinitial Fourier  approximation that had largediscrepancies at
the boundary points and demonstrated oscillating Gibs phenomena.

All methods had agood fit with thereal tracking motion data, except
the GCV, which demonstrated some discrepanciesnear loca maximaand
minima. DFTR had the best approximation asit had the highest SNR(37.9)
and thesmallest accel eration M SE (0.004). Thesecond best approximation
according to the SNR index of table 1 wasthat of b-splines. Thetracking
simulated data were periodic and thus DFTR and PSG have an advantage
over techniques with polynomia formulation. Thesamereasoningisapplied
to the projectileand to thecounter motion, whereb-splinesand GCV have
apriori advantagedueto their polynomial nature. The gain for the DFT is
like an idedl filter (see Figure 2), with no attenuationsand a sharp signal
decline near the estimated 6 Hz
cut-off frequency.

The results suggest that DFTR is suitable for smoothing periodic
motions, but further research should point to short term Fourier transform
and wavel etsfor non-periodic motions. DFTR can be used and asamethod
to just estimate the cut-of f frequency of asigna, 1arequirement for other
smoothing techniques.



Table 1.

Descriptivestatisticsand fit indexesof the error approximation of thefour
algorithmsfor the trackingmotion.

Statistics
Methods Mean S.D. Max Min MSE

Displacement (m)
Red err.  0.000497 0.01007 0.0257 -0.0287 0.000101
Fourier ~ 0.000492 0.01007 0.0255 -0.0285 0.000101
DFT Reg. 0.000498 0.00041 0.0013 -0.0001 0.000000
5 Har. 0.000494 0.00097 0.0023 -0.0012 0.000001
B-spline  0.000491 0.00149 0.0117 -0.0015 0.000002
GCV 0000498 001126 0.0163 -0.0247 0.000126

Velocity (m/sec)
DFT Reg. -0.000003 0.00529 0.0083 -0.0083 0.000027
5 Har. -0.000004 0.02474 0.0429 -0.0478 0.000609
B-spline 0.012305 0.07548 0.6329 -0.1803 0.005819
GCV 0005410 0.24675 0.6610 -0.6128 0.060610

Acceleration (m/sec2)
DFT Reg. -0.000010 0.63462 0.9701 -0.895 0.004007
5 Har. -0.000657 7.13228 13.3212 -12.332 0.506151
B-spline -6.074135 2220557 6.3333 -140.508 5.275172
GCV 12.994500 36.94028 785671 -38.237 15.266185

Fit Indexes
Methods SmNS NSR SNR

Displacement
Real error 5100.51653029823 25.50258265141 0.03921171489
Fourier 40.48959326904 0.20244796635 4.93954085118
DFT Reg. 527770481463 0.02638852407 37.89526072881
5 Har. 6.88238463811 0.03441192319 29.05969522430
B-spline 6.43043575622 0.03215217878 31.10209130176 GCV
68.23443470833 0.34117217354 2.93107139899
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Figure 2. DFTR gain characteristics for the tracking data.
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