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INTRODUCTION 
This study addressed the problem of the differentiation process of noisy 

human motion data. The finite difference method was the first approach to 
replace the graphical method in obtaining smooth kinematic data and their 
derivatives. The finite difference method gives the derivatives estimates, 
smoothing the data at the same time, but Widule and Gossard, (1973) pointed 
out that the accelerations were too noisy and with high oscillations for direct 
application. 

Winter, Sidwall, and Hobson, (1974) obtained a better approximation 
for the second derivative in a human locomotion after filtering their data 
with a low pass second order Butterworth filter. Pezzack, Norman, and 
Winters, (1977) compared the calculated accelerations from finite 
differences after digital filtering by a second order Butterworth filter, with 
accelerations from Chebyshev least squares polynomials followed'by 
polynomial differentiation. Pezzack et al. (1977) demonstrated the higher 
quality of the Butterworth filter comparing the calculated data with analog 
real data obtained with an accelerometer. However the uncertainty of the 
cut-off frequency choice is a drawback when someone is dealing with digital 
filters or with frequency domain methods. The process of trial and error in 
order to find the right set of filter parameters could be tedious. 

Cubic splines gave a better estimation of higher order derivatives than 
orthogonal polynomials when applied to force predictions (Zernicke, 
Caldwell, & Roberts, 1976). 

Splines require a number of parameters to be estimated before an analysis 
and the work of Wood and Jennings (1979) was an attempt to automate the 
trial and error procedure. The work of Dierckx (1975) on b-splines and its 
application in biomechanics (Soudan & Dierckx, 1979) established the 
suitability of splines in human motion analysis. Another method that uses 
b-splines is the Generalized Cross Validation Criterion (GCV) (Utreras, 
1981) that Woltring (1985) used to analyze Pezzack et al.'s (1977) data and 
Vaughans's (1982) data. 



Fourier analysis has been employed to describe a measured motion and 
to examine the frequency domain of human movement., Cappozzo, Leo, 
and Pedotti, (1975) computed the harmonics of displacement data with 
different sampling intervals until the 
variance of the residuals approached a minimum difference and then 
calculate explicitly the velocities and accelerations from the Fourier 
coefficients. Jackson (1979) also estimated the cut-off frequency at the 
point where the variance of the residuals was minimum. Bar, Eden, 
Ishai, and Seliktar (1979) estimated the lowest cut-off frequency where the 
variance of the filtered signal from the original was the same with the known 
error amplitude. 
The delineation of those spectrum frequencies that account for the majority 

of a signal variance has a crucial role in applied biomechanics. The purpose 
of this study was to propose a new smoothing technique for human motion 
data using a Discrete Fourier Transformation (Dm) that uses a statistical 
criterion for the estimation of the cut-off frequency. This smoothing method 
was constructed via a DFT of the displa~ement data combined with,.a 
regression analysis. DFT and regression method (DFTR) gives a meaningful 
way to identify this frequency through a statistical procedure, the regression's 
level, in contrast with the power spectrum graph (PSG) method that applies 
the "eye-balling" method. A secondary purpose was to compare this 
alternative method with three conditions representing characteristic human 
movements. 

METHODS 
DFTR transforms the data from the time domain to the frequency 

domain. The new constructed data formed an orthogonal basis of variables 
that they could enter a regression analysis for the evaluation of the 
statistically significant variables. Each variable represented a Fourier 
frequency, hence the valid frequencies and an optimum cut-off frequency 
could be estimated. 

The DFTR method does not completely eliminate the trial and error 
procedure which is a characteristic of the most smoothing techniques, but 
it gives a fixed way to deal with it. After the regression chooses the valid 
frequencies for a certain $ level the researcher can decide if the smoothing 
is acceptable by examining the fitting of the data curve and the smoothness 
of the derivatives. A more strict $ level usually can improve the smoothness 
of the derivatives. Furthermore, the researcher can either force some of the 
frequencies out of the equation to increase the degree of smoothing or force 
some of the frequencies into the equation to increase the degree of fitting. 



The maximum accepted frequency is considered the cut-off frequency. 

- The PSG of the data represents the squares of the Fourier coefficients 
with respect to frequency. The flat part of the signal frequency spectrum is 
assumed to be connected with random error (Press, Teukolsky, Vetterling, 
& Flannery, 1992). In this case, the squared amplitudes of the high 
frequencies beyond the lowpass signal cut-off frequency should fotm a 
nearly straight line. The first estimation of the cut-off frequency would be 
exactly that point where the flat part of the graph begins. Even a crude 
approximation can give good results, when applied to data, as the obtained 
results differ from the optimal results by an amount that is second order in 
the precision to which the optimal cut-off frequency is determined (Press 
et al., 1992). 

The matrix language of SPSSx was used to implement the DFT and 
regression method and the power spectrum graph method. Two routines 
written in fortran77 by Dierckx (1975) and Woltring (1985), were used for 
the b-splines and GCV methods respectively. The four methods a) DFTR, 
b) PSG, c) b-splines, and d) GCV were evaluated under four different data 
sets. The algorithms were evaluated with four applications: a) Pezzack et 
al.'s data (1977), b) data simulating a projectile motion, c) data simulating 
a counter motion, and d) data simulating a tracking motion. Pseudo-random 
error with normal distribution of 0 mean and 0.01 standard deviation 
(Lanshammar, 1982) was superimposed to the synthetic data. 

The mean square error (MSE) and the mean signal to noise ratio (SNR) 
of the smoothed data were used as indexes of comparison among the 
algorithms for the three synthetic data sets. The results from Pezzack's et 
al. data (1977) were compared with 
previously published results (Soudan & Dierckx, 1979; Wood & Jennings, 
1979; Lanshammar, 1982) for the same data set. 



RES,ULTS AND DISCUSSION 
Pezzack et al.'s (1977) data by nature were good (Lanshammar, 1982) 

and a l l  algorithms had reasonably fitting to the data. Comparison of the 
DFTR acceleration curve (see 
Figure 1) with the real acceleration curve (Pezzacket. al1977; Lansharnmar, 
1982) demonstrated the ability of the algorithm to preserve the peaks and 
shape of the curve. The oscillations between one and two seconds are larger 
than the fluctuations of the real curve, but the shape of the acceleration 
curve functions in the same fashion with the real curve for the rest of the 
sampling time, even at the boundary points. 

DFTR and PSG had larger MSE than the b-splines and GCV methods 
for the counter and projectile motions. The b-splines and GCV methods 
estimated closer the real data and the real derivatives. The b-splines had 
the highest SNR (132.9) and it also had the smallest MSE (0.588) for the 
counter motion acceleration data; the GCV had the highest SNR (83.6) and 

Figure 1. DFTR estimated acceleration data for Pezzack et al.'s 
data (1977). 



it also had the smallest MSE (0.0002) for the projectile motion acceleration 
data, These results suggest that b-splines and GCV are suitable for projectile 
motions; whereas the DFTR and PSG should not be used with these type of 
motions. The fmquency domain methods failed to give a good approximation 
due to the initial Fourier approximation that had large discrepancies at 
the boundary points and demonstrated oscillating Gibs phenomena. 

All methods had a good fit with the real tracking motion data, except 
the GCV, which demonstrated some discrepancies near local maxima and 
minima. DFTR had the best approximation as it had the highest SNR(37.9) 
and the smallest acceleration MSE (0.004). The second best approximation 
according to the SNR index of table 1 was that of b-splines. The tracking 
simulated data were periodic and thus DFTR and PSG have an advantage 
over techniques with polynomial formulation. The same reasoning is applied 
to the projectile and to the counter motion, where b-splines and GCV have 
a priori advantage due to their polynomial nature. The gain for the DFT is 
like an ideal filter (see Figure 2), with no attenuations and a sharp signal 
decline near the estimated 6 Hz 
cut-off frequency. 

The results suggest that DFTR is suitable for smoothing periodic 
motions, but further research should point to short term Fourier transform 
and wavelets for non-periodic motions. DFTR can be used and as a method 
to just estimate the cut-off frequency of a signa, 1 a requirement for other 
smoothing techniques. 



Table 1. 
Descriptive statistics and fit indexes of the error avwroximation of the four 
algorithms for the tracking motion. 

Statistics 
Methods Mean S.D. Max Min MSE 

Displacement (m) 
Real err. 0.000497 0.01007 0.0257 -0.0287 0.000101 
Fourier 0.000492 0.01007 0.0255 -0.0285 0.000101 
DFTReg. 0.000498 0.00041 0.0013 -0.0001 0.000000 
5 Har. 0.000494 0.00097 0.0023 -0.0012 0.000001 
B-spline 0.000491 0.00149 0.01 17 -0.0015 0.000002 
GCV 0.000498 0.0B126 0.0163 -0.0247 0.000126 

Velocity (dsec)  
DFT Reg. -0.000003 0.00529 0.0083 -0.0083 0.000027 
5 Har. -0.000004 0.02474 0.0429 -0.0478 0.000609 
B-spline 0.012305 0.07548 0.6329 -0.1 803 0.0058 19 
GCV 0.0054 10 0.24675 0.66 10 -0.6128 0.060610 

Acceleration (dsec2) 
DFT Reg. -0.000010 0.63462 0.9701 -0.895 0.004007 
5 Har. -0.000657 7.13228 13.3212 -12.332 0.506151 
B-spline -6.074135 22.20557 6.3333 -140.508 5.275172 
GCV 12.994500 36.94028 78.5671 -38.237 15.2661 85 

Fit Indexes 
Methods SmNS NSR SNR 

Displacement 
Real error 5 100.5 1653029823 25.50258265 141 0.03921 17 1489 
Fourier 40.48959326904 0.20244796635 4.93954085 11 8 
DFT Reg. 5.27770481463 0.02638852407 37.89526072881 
5 Har. 6.8823846381 1 0.03441 192319 29.05969522430 

j 
B-spline 6.43043575622 0.03215217878 3 1.10209130176 GCV 

i 
68.23443470833 0.34117217354 2.93 107139899 I 



Figure 2. DFTR gain characteristics for the tracking data. 
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