Frequency Content of Different Track
and Field Basic Movements

M. D'Amico and G. Ferngno
Centro di Bioingegneria, Fondazione Pro Juvenrute
Politecnico, Milano, Italy

R.Rodano
Politecnico di Milano
Department of Electronics
Milano, |taly

INTRODUCTION

Among the human movements, the sporting ones represent the most criti-
ca condition. In fact, either fast actions or perfect movements are re-
quired, from atechnical point of view, in order to obtain the best perfor-
mances and/or to avoid injuries during events or training. For these
reasonssporting activitiesrepresent theboundary o body expression. The
complexity of sport actions reflects upon quantitative anaysis because o
the necessity of very sophisticated and expensiveinstrumentation, signal
processing algorithms, and laboratories, while often coaches would need
simpleinstrumentation to continuously carry on field analysis to control
the effect of training.

The purposeof thiswork istwofold: to point out therole of theanalysed
performances and to assessthefrequency content (i.e. the bandwidth) of
body landmark displacementsduring several (basic) track and field move-
ments.

In biomechanicsin order to study quantitatively human motion the
modelling approach is widdly used (see Hatze [1984] for a review, Zat-
sijorsky (1980) ).



Thebodyismodelledas aset of linksconnected by hinges. Itispossible,
provided the estimate of body parameters, such as segment weight and
their center of massposition, to assessthe dynamicsof themovement. This
analysisal so requires the acquisitionof ground reaction forces by means
of force platforms.

Sincetheearly studies, most of the equipment devel oped for kinematic
studiesare based on measurementsof displacement data of a limited set
of artificial landmarks fixed to the body segments (review in Woltring,
(1984; Lanshammar, 1982b).

In order to correctly use such devicesit is very important to point out
the theoretical constraints to berespected during analysisin order to ob-
tain meaningful data.

At first we must besurethat thesamplingrateissufficiently high to en-
sure that the signal recorded has negligible components outside the Ny-
quist bandwidth according to the Shannon sampling theorem. If this con-
dition isnot met, frequency componentsare folded back into the Nyquist
bandwidth resulting in signal distortion: the well known phenomenon of
aliasingin signal processing. For this reason it is very important to have
some knowledge about thefrequency content d thesignal under analysis.

Moreover if velocitiesand accelerationsare of interest and they arees-
timated by numerical differentiation of displacement data, it is necessary
to include additional constraints. In fact whatever the devices used to ac-
quiredata, thesewill contain certain amountsof error (seeWood 1982for
areview of thesourcesd error and Lanshammar, 1982b for ashort review
on theerrorsin variouskinematic equipments).

In general, such errorscan be divided into two classes: those that can
be described as "systematic" such as image distortion, inaccurate scales
and placement o body markers, etc.; and those that can be described as
"random" arising from digitization process and from algorithmslike dis-
tortion corrections and 3D reconstruction. Considering these random er-
rors induced by multiple and independent causesit can be reasonably
hypothesized that the additive result would be normaly distributed
(central limit theorem) and independent of thesignal which isassumed to
be some unknown deterministic process (Cappozzo et al., 1975; Lesh et
a., 1979; Lanshammar, 1981). Now, while thefirst kind of error is often
relatively harmless asfar asdifferentiation isconcerned, the second kind
ismuch moreserious, in fact differentiation acts asa high passfilter, and
thus amplifiesthe random noise which extends at high frequencies (Lan-
shammar 1982-3). In this case Lanshamrnar (Lanshammar, 1981)
demonstrated that the sampling theorem could be inadequate for the
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determination of sampling rates when the collected data are subjected to
differentiation. In Gustaffson and Lanshammar (1977) a formula was
verified that relates the maximal precision, (minima variance) in es
timated derivations, to the measurement noise variance, the sampling in-
terval and the bandwidth of the measured signal. Assuming the measure-
ment datay(t) asasum of white noisee(t) and useful signal x(t): y(t) =x(t)
+ e(t); t=0, T, 2T,... (T isthe sampling interval) in which the signal x (t)
isstrictly a band limited signal with the bandwidth x (rad/sec)
The minimal variance formulais

Vi Twx®EH
VK = Vk,min =" (63)
I (2k+1)

where vk is the variance of the estimated k-th order derivative, Vi,
minisitsminimal value and V?n is the white noise variance. From thisfor-
mulait is possibleto derive some useful considerati onsabout anal ysed per-
formances and signal processing techniquesfor derivative estimations.

At first we note that when measurement data are used for estimation of
thesignal itself the minimal noise transmissioni.e. the ratioVZk, min/Vn
is proportional to thesignal bandwidth, but when first and second deriva-
tives are estimated the minimal noise transmission grows as »x and «’x,
respectively.

Thus, for the estimation of the second derivative of measured time
series, a mistake in bandwidth selection could dramaticaly affect the
results, becausethe resulting precision is extremely sensitiveto variations
in thesignal bandwidth.

For this reason algorithms that automatically select asignal bandwidth
based on the optimization of some objective parameters related to
measurement data (Woltring, 1985; Anderssen and Bloomfield; 1974,
D’Amico and Ferrigno, 1988; Wood and Jennings, 1978) must be preferred
as cited in D’ Amico and Ferrigno (1988), with respect to trial and error
methods (Reinsch 1967-71; Pezzack et a., 1977).

Another important fact can aso beenlighted by formula (1):given the
precision of the measurements of data i.e. given the noise variance and
given the signal bandwidth, the only way toincrease the K-th order deriva-
tion estimate precision isto increase sampling rate and from (1) the max-
imum sampling interval can be found in relationship with the required
precision on k-th derivative:
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(2}
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So the sampling rate suggested by the Shannon sampling theorem could
not be suitableto obtainthe required precisionon derivatives. Moreover,
if it possible to choose different acquisition data systems with different
noiselevel added to the useful signd, ismuch better to prefer thosefeatur-
ing high precision even if not so fast, rather than fast but not highly ac-
curate.

Moreover to confirm thisfact it would be also emphasized that if the
signal isvaryingdowly, then the assumption of noisewhitenessisnot vaid
if it is sampled too often (Lanshammar, 1982b) and this would be very
dangerous because amogt al differentiating algorithms work under the
whitenoisehypothesis. In thisframetheuse of automaticmotion analysers
guarantees a knownlevel o noise and its stationarity along the measure-
menls.

Spectral estimation

The spectral estimation allows to compute an estimate of the power
spectrum of a deterministic signal or of a stationary processes are ad-
dressed (Makhoul, 1975). The best known techniques span from the
Periodogram (Schuster, 1898-99) based on Fourier andyss, to the
Autoregressive(AR), Moving Average(MA) and AutoregressiveMoving
Average (ARMA) modes. Our approach has been oriented to the use of
AR modelswhich feature awide variety o wel proven agorithms.
Autoregressive Algorithm

Theautoregressivemodel of asigna relieson the assumptionthat thesig-
nal could be modelled as alinear combination of its past values:

T = Tmax =

P
y(k) = Ziy(k-i)a (3
1 1

whereP isthe model order and"a" isthei-th term of avector of model
parameters. It ispossibleto determineeasily the parametersvector by min-
imizing the squared prediction error. Thiserror isthe difference between
the model output y (k) and the actual valued the measurement y(k):
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where N isthe total number of measured points.

Severa agorithms can be used to obtain the model parameters; our
choice has been oriented to the maximum sharpness in the details of the
power spectrum density (PSD), with no assumptions on thesignal outside
theacquired record. We have used theforward-backward least squaresal-
gorithm (Ulrych and Clayton, 1976); (Nuttal,1976) which gives vary sharp
PSD without showing Spectral line splitting (Kay and Marple, 1981,
Marple 1987). The PSD estimate of the signal is easily computed by the
model parametersvector asfollows (Kay and Marple 1981):

2 P -k 2
5{14 - V:Ts/ (1+Ekaz (6)
2 1k

whereS (z) representsthe PSD, v thestandard deviation of the predic-
tionerror, Tsthereciprocal of thesampling rateand zisan abritrary com-
plex value.

The choice of the order has been discussed in D’Amico and Ferrigno
(1988); for the present paper P has been fixed t0 9.

The AR model has been used also to extend the data before and after
the acquired datain order to perform afiltering of thesignal asdescribed
in D’Amico and Ferrigno (1988) and obtain the derivations of the data.
Determined Frequencies

For the purposes of thiswork threefrequencies havebeen considered: the
frequency at which the signal to noise ratio falls below 50 (also used for
filtering), the frequency which boundsthe 99.5% o thesignal power and
the frequency bounding the 99% of the signal power.

Thefirst one (F1) is a measure of the compatibility of the measuring
device with the data characteristics, it accounts for the maximum useful
bandwidthinrelation to the measurement noise. Thesecond and third fre-
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guencies (F2, F3) are more representative o the properties of thesignal.
The comparison between thefirst frequency F1 with respect to F2and F3
alows an assessment of the validity of the use of a given instrumentation
for a movement the power of whichisbounded by F2 and F3. The reason
we have used two frequencies (F2 and F3) instead of only oneisthat the
difference between these two accouutsfor the consistency of the estimate
and avoids methodical grossolaneerrors.

Measuring Instrumentation

The measurements of the kinematics of the movements that will be
reported in the results havebeen performed with afully automatic device:
the ELITE system. This-instrumentation, which measures the displace-
ments of passive hemispheric lightweight landmarks applied to the sub-
jects, doesnot interferewith either the athlete's movementsor withtheen-
vironment in which thetestswere performed. Thiscondition is mandatory
when analysing sport movementsin which the subject freedom must be
guaranteed by the measuring devices. The ELITE system (Ferrigno and
Pedotti, 1985) can guarantee such a non-invasivityin the measure because
it recognizesthelandmarksby their shape by meansd a hardwareimple-
mented real time cross correlation algorithm. In fact this feature alows
the use of very small unobtrusivelandmarks (1cm on a2.8 metersof field
of view), and makeit possibleto achieve a very high accuracy, up to one
part on 2800 of thefield of view, by computing the center of massadf the
over threshold cross correlation markers for each landmark. The system
used was a three dimensional one, equipped withtwo CCD TV cameras.
In order to sharply sample the data, the cameras are electronically shut-
tered, i.e. they are sensitiveto light for only 1. millisecond for each frame.
The sampling rate is50 images per second and the subjects werelit up by
infrared flashes, mouuted on the cameras, which work synchronouslywith
the electronic shutter. The choice of the near infrared wavelength allows
the use of areatively high power flash (50 W for 1 millisecond) without
giving any disturbance to the subject.

The 3D coordinates of the landmarks have been obtained by using the
stereophotogrammetric parameters of the cameras which havebeen com-
puted beforethe experiments by acquiring a control grid of landmarks of
known geometry.

All the data were acquired and stored on a small personal computer
IBM compatible with 280286 INTEL microprocessor and mathematical
coprocessor: an Olivetti PE28. All the subsequent processing for spectral
estimation, F1, F2 and F3 determination and for vel ocity computing have
been carried out on asimilar computer: an Olivetti M290.
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METHODS AND FROCEDURE
Suljects

The subjects of this study were two male athletes, trained for different
track and fieldevents: athlete A isaracewalker, athlete B is400 mhurdles
runner. They were asked to perform the basic and technical movementsas
reported below.

Thetraining backgroundd the twosubjects, ensured the correct execu-
tion of the movementswith high technical content.

Athlete A:
WAL. =walking at natural cadence;
RW. =race walking at competition speed;
JOG. =running at warm up speed.
Athlete B
SPR. =sprinting;
VJ. =vertical jump;
D.J =drop jump;
BJ. =broad jump;
STA. =starting from blocks, push off leg;
HUR. =hurdle overcoming, leadingleg;
L.L. =take off exercisesfor longjumpers, leading leg.

Five reflectivemarkerswerefixed on the followinganatomical pointsof
the lower limb, chosen in order to permit the description of its kinematics
through afour link model:

marker 1 on theiliaccrest;

marker 2 on the head of the femur;

marker 3 on the knee joint center o rotation;

marker 4 on the external malleolus;

marker 5 on the 5th metatarsal head.

RESULTSAND DISCUSSION

The exerciseperformed by the athletes describe arelatively large band o
the human locomotion, as the peak values of speed amplitude measured
onmarker 1, themarker of the model nearest to thecenter o gravity, range
from 2m/s (walking) to 7.7 m/s (sprinting).

The results of the study are reported in the histogramsd Figurel, 2, 3,
4, and 5where three cut off frequenciesare shownfor x and y coordinates
o each marker. Black histogramsrepresent the frequencies at which the
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signal to noiseratiofallsunder 50, thisisalso thefilter cut off frequency
that neglects124and 0.5% of thesignal power.

The resultsindicate numerous effects of the movement on the cut off
frequency (frequency content) of each marker, moreover there are sig-
nificant differencesamong thesignalsdf thefive anatomical pointsduring
the same movement, and between x and y coordinates of each marker
during the same movement. The resultswill be discussed under respective
sectional headings.
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Cut offfrequency at 0.5% of signal power

The means and standard deviationsd the five markerscut off frequency
at 0.5%, reported in Table 1, demonstrate higher valuesin race walking
(6.92 Hz) dongthey axisand in vertical jump alongx axig 4. 84 Hz). The
lowest valuesare from broad jump aong boththe axes(x = 288 Hz,y =
0,88 Hz).

All the movements have a lower cut off frequency aong the principal
direction of progression that isthex axis, and the same istrue for marker
coordinatesd vertical jumping that evolvesin the vertical direction.

The standard deviationsrangefrom 0.32 to 22 Hz for thex cut off fre-
guenciesand from 0.21to 1.50 Hz for they.

This result underlines differencesd frequency content, varying from
06 to 5.2 hZ, among the five markersd the lower limb during the same
movement. Thelargest differencesmay be seen between markers5and 2
during vertica jump(x axis) and between markers3 and4 in race waking
(v axis).

Another interesting observation concerns Uhe differences between x and
y cut off frequency d the same marker. They vary from marker to marker,
and depend on the movement. The highest delta is shown by the knee
marker during race waking (6 Hz) and the lowest by the fifth metatarsal
head marker during jogging. All these observationsemphasizethe need to
perform the filtering procedure with cut off frequencyvaryingin relation
with the kind o movement, the marker position and coordinates.

Cut off frequency at 1% signal power

Similar considerationsmay be drawn when the cut off frequenciesat 1%
d thesignal power are analysed. Obvioudy, in this case, all the valuesare
lower, asconsequenced thelarger amount of power neglected.

Thedifferencebetween the frequenciesrangesfrom0.2 to 2Hz, for the
same condition, and there isthetrend to have the higher differences,when
the cut off valueishigh.

The andysis o the cut off frequency at 1% o signal power has been
preformed in order to be sure that the cut off at 0.5% was correct. The
small differencesobserved between these two values demonstrate a con-
sistency in the method used.

Filter cut off frequency

Tablell showsmeansand standard deviationsd thefive markersfilter cut
off frequencies,computed with the method proposed by D' Amico and Fer-
rigno (1988),
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When the data are compared with those of Tablel, it ispossibleto see
that thefilter dwaysacts beyond the frequency which bound the 99.5% of
the signal power.

Thisfact pointsout that the instrumentation used with itsaccuracy, al-
though working at only 50 Hz of samplingrate, isappropriate. Infact, al-
waysmorethan 99.5% of thesignal wasconsideredfor derivativecomputa-
tions, neverthelessa good signal to noise ratio was guaranteed.

TABLE

Mean valuesand standard deviationsdf the cut off frequencies bound-
ing the 99.5% of signal power.

x sd ¢ Y s
WAL, 0.23 0.32 .56 095
B, 1.52 059 692 L50
Js. L= 033 340 0.5
SPR. 2.68 1.21 344 .03
Vi, . 484 .20 25D 147
vl 3.0 L4 34 063
BJ. 058 041 2.5H .86
STA. 1.58 123 4.4 072
HUE. 204 1.41 136 0488
L.L. 208 1.7 .64 021
TABLE
Mean valuesand standard deviationsdof thefilter cut off frequencies.

X s Y «
WAL. 5.08 126 572 141
R.W. 848 0.70 914 232
JOG. 5.76 L.53 6,72 .02
SPR. 9.32 L35 0.02 .84
V.J T.24 L7 fi. 0.7
D.J 5.545 1.35 B.AA 257
B.J 6. T2 0.95 6, 810 193
STA. E.20 1.9 2.0 1.45
HUR. W16 2.11 10.12 137
L.L. B.56 1.84 2.0 1.1%
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