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Among the human movements, the sporting ones represent the most criti- 
cal condition. In fact, either fast actions or perfect movements are re- 
quired, from a technical point of view, in order to obtain the best perfor- 
mances and/or to avoid injuries during events or training. For these 
reasons sporting activities represent the boundary of body expression. The 
complexity of sport actions reflects upon quantitative analysis because of 

. the necessity of very sophisticated and expensive instrumentation, signal 
processing algorithms, and laboratories, while often coaches would need 
simple instrumentation to continuously carry on field analysis to control 
the effect of training. 

The purpose of this work is twofold: to point out the role of the analysed 
performances and to assess the frequency content (i.e. the bandwidth) of 
body landmark displacements during several (basic) track and field move- 
ments. 

In biomechanics in order to study quantitatively human motion the 
modelling approach is widely used (see Hatze [I9841 for a review, Zat- 

I 
sijorsky (1980) ). 
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The body is modelled as a set of links connected by hinges. It is possible, 
provided the estimate of body parameters, such as segment weight and 
their center of mass position, to assess the dynamics of the movement. This 
analysis also requires the acquisition of ground reaction forces by means 
of force platforms. 

Since the early studies, most of the equipment developed for kinematic 
studies are based on measurements of diplacement data of a limited set 
of artificial landmarks fmed to the body segments (review in Woltring, 
(1984, Lanshammar, 1982b). 

In order to correctly use such devices it is very important to point out 
the theoretical constraints to be respected during analysis in order to ob- 
tain meaningful data. 

At first,we must be sure that the sampling rate is sufficiently high to en- 
sure that the signal recorded has negligible components outside the Ny- 
quist bandwidth according to the Shannon sampling theorem. If this con- 
dition is not met, frequency components are folded back into the Nyquist 
bandwidth resulting in signal distortion: the well known phenomenon of 
aliasing in signal processing. For this reason it is very important to have 
some knowledge about the frequency content of the signal under analysis. 

Moreover if velocities and accelerations are of interest and they are es- 
timated by numerical differentiation of displacement data, it is necessary 
to include additional constraints. In fact whatever the devices used to ac- 
quire data, these will contain certain amounts of error (see Wood 1982 for 
a review of the sources of error and Lanshammar, 1982b for a short review 
on the errors in various kinematic equipments). 

In general, such errors can be divided into two classes: those that can 
be described as "systematic" such as image distortion, inaccurate scales 
and placement of body markers, etc.; and those that can be described as 
"random" arising from digitization process and from algorithms like dis- 
tortion corrections and 3D reconstruction. Considering these random er- 
rors induced by multiple and independent causes it can be reasonably 
hypothesized that the additive result would be normally distributed 
(central limit theorem) and independent of the signal which is assumed to 
be some unknown deterministic process (Cappozzo et al., 1975; Lesh et 
al., 1979; Lanshammar, 1981). Now, while the first kind of error is often 
relatively harmless as far as differentiation is concerned, the second kind 
is much more serious, in fact differentiation acts as a high pass filter, and ' thus amplifies the random noise which extends at high frequencies (Lan- 
shammar 1982-a). In this case Lanshamrnar (Lanshammar, 1981) 
demonstrated that the sampling theorem could be inadequate for the 
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determination of sampling rates when the collected data are subjected to 
differentiation. In Gustaffson and Lanshammar (1977) a formula was 
verified that relates the maximal precision, (minimal variance) in es- 
timated derivations, to the measurement noise variance, the sampling in- 
terval and the bandwidth of the measured signal. Assuming the measure- 
ment data y(t) as a sum of white noise e(t) and useful signal x(t): y(t) =x(t) 
+ e(t); t = o, T, 2T, ... (T is the sampling interval) in which the signal x (t) 
is strictly a band limited signal with the bandwidth x (rad/sec) 

The minimal variance formula is: 

v~~ T x (2k+1) 

Vk r Vk, min = 
II (2k + 1) 

(1) 

where v2k is the variance of the estimated k-th order derivative, v2k, 
min is its minimal value and v2n is the white noise variance. From this for- 
mula it is possible to derive some useful considerations about analysed per- 
formances and signal processing techniques for derivative estimations. 

At first we note that when measurement data are used for estimation of 
the signal itself the minimal noise transmission i.e. the ratio v2k, min/v2n 
is proportional to the signal bandwidth, but when first and second deriva- 

3 5 tives are estimated the minimal noise transmission grows as o x and w x, 
respectively. 

Thus, for the estimation of the second derivative of measured time 
series, a mistake in bandwidth selection could dramatically affect the 
results, because the resulting precision is extremely sensitive to variations 
in the signal bandwidth. 

For this reason algorithms that automatically select a signal bandwidth 
based on the optimization of some objective parameters related to 
measurement data (Woltring, 1985; Anderssen and Bloomfield; 1974, 
D'Amico and Ferrigno, 1988; Wood and Jennings, 1978) must be preferred 
as cited in D'Amico and Ferrigno (1988), with respect to trial and error 
methods (Reinsch 1967-71; Pezzack et al., 1977). 

Another important fact can also be enlighted by formula (1): given the 
precision of the measurements of data i.e. given the noise variance and 
given the signal bandwidth, the only way to increase the K-th order deriva- 
tion estimate precision is to increase sampling rate and from (1) the max- 
imum sampling interval can be found in relationship with the required 
precision on k-th derivative: 
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So the sampling rate suggested by the Shannon sampling theorem could 
not be suitable to obtain the required precision on derivatives. Moreover, 

I, if it possible to choose different acquisition data systems with different 1 noise level added to the useful signal, is much better to prefer those featur- 

i ing high precision even if not so fast, rather than fast but not highly ac- 
curate. 

i Moreover to confirm this fact it would be also emphasized that if the 
1 

signal is varying slowly, then the assumption of noise whiteness is not valid 
I if it is sampled too often (Lanshammar, 1982b) and this would be very 

dangerous because almost all differentiating algorithms work under the 
white noise hypothesis. In this frame the use of automatic motion analysers 
guarantees a known level of noise and its stationarity along the measure- 

Spectral estimation 

The spectral estimation allows to compute an estimate of the power 
spectrum of a deterministic signal or of a stationary processes are ad- 
dressed (Makhoul, 1975). The best known techniques span from the 

i Periodogram (Schuster, 1898-99) based on Fourier analysis, to the 
Aut oregressive ( AR), Moving Average (MA) and Autoregressive Moving 

i 
i Average (ARMA) models. Our approach has been oriented to the use of 

AR models which feature a wide variety of well proven algorithms. 
Autoregressive Algorithm 

The autoregressive model of a signal relies on the assumption that the sig- 
i nal could be modelled as a linear combination of its past values: 

rn 

the ThA a 
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where P is the model order and "a" is the i-th term of a vector of model 
parameters. It is possible to determine easily the parameters vector by min- 
imizing the squared prediction error. This error is the difference between 
the model output y (k) and the actual value of the measurement y(k): 

I 



= -2 i y(k-i)a with a = 1 
0 1 0 

N-1 2 
E = 2  k e  

P k  
(5)  

where N is the total number of measured points. 
Several algorithms can be used to obtain the model parameters; our 

choice has been oriented to the maximum sharpness in the details of the 
power spectrum density (PSD), with no assumptions on the signal outside 
the acquired record. We have used the forward-backward least squares al- 
gorithm (Ulrych and Clayton, 1976); (Nuttal,1976) which gives vary sharp 
PSD without showing Spectral line splitting (Kay and Marple, 1981; 
Marple 1987). The PSD estimate of the signal is easily computed by the 
model parameters vector as follows (Kay and Marple 1981): 

P -k 2 
IS(z)I:= v 2 T s /  Il+ :k;z 1 (6) 

where S (z) represents the PSD, v2 the standard deviation of the predic- 
tion error, Ts the reciprocal of the sampling rate and z is an abritrary com- 
plex value. 

The choice of the order has been discussed in D'Amico and Ferrigno 
(1988); for the present paper P has been fuced to 9. 

The AR model has been used also to extend the data before and after 
the acquired data in order to perform a filtering of the signal as described 
in D'Amico and Ferrigno (1988) and obtain the derivations of the data. 
Determined Frequencies 

For the purposes of this work three frequencies have been considered: the 
frequency at which the signal to noise ratio falls below 50 (also used for 
filtering), the frequency which bounds the 99.5% of the signal power and 
the frequency bounding the 99% of the signal power. 

The first one (Fl) is a measure of the compatibility of the measuring 
device with the data characteristics, it accounts for the maximum useful 
bandwidth in relation to the measurement noise. The second and third fre- 



quencies (F2, F3) are more representative of the properties of the signal. 
The comparison between the first frequency F1 with respect to F2 and F3 
allows an assessment of the validity of the use of a given instrumentation 
for a movement the power of which is bounded by F2 and F3. The reason 
we have used two frequencies (F2 and F3) instead of only one is that the 
difference between these two accouuts for the consistency of the estimate 
and avoids methodical grossolane errors. 
Measuring Instrumentation 

The measurements of the kinematics of the movements that will be 
reported in the results have been performed with a fully automatic device: 
the ELITE system. This -instrumentation, which measures the displace- 
ments of passive hemispheric lightweight landmarks applied to the sub- 
jects, does not interfere with either the athlete's movements or with the en- 
vironment in which the tests were performed. This condition is mandatory 
when analysing sport movements in which the subject freedom must be 
guaranteed by the measuring devices. The ELITE system (Ferrigno and 
Pedotti, 1985) can guarantee such a non-invasivity in the measure because 
it recognizes the landmarks by their shape by means of a hardware imple- 
mented real time cross correlation algorithm. In fact this feature allows 
the use of very small unobtrusive landmarks (1 cm on a 2.8 meters of field 
of view), and make it possible to achieve a very high accuracy, up to one 
part on 2800 of the field of view, by computing the center of mass of the 
over threshold cross correlation markers for each landmark. The system 
used was a three dimensional one, equipped with two CCD TV cameras. 
In order to sharply sample the data, the cameras are electronically shut- 
tered, i.e. they are sensitive to light for only 1 millisecond for each frame. 
The sampling rate is 50 images per second and the subjects were lit up by 
infrared flashes, mouuted on the cameras, which work synchronously with 
the electronic shutter. The choice of the near infrared wavelength allows 
the use of a relatively high power flash (50 W for 1 millisecond) without 
giving any disturbance to the subject. 

The 3D coordinates of the landmarks have been obtained by using the 
stereophotogrammetric parameters of the cameras which have been com- 
puted before the experiments by acquiring a control grid of landmarks of 
known geometry. 

All the data were acquired and stored on a small personal computer 

, IBM compatible with a 80286 INTEL microprocessor and mathematical 
coprocessor: an Olivetti PE28. All the subsequent processing for spectral 
estimation, F1, F2 and F3 determination and for velocity computing have 
been carried out on a similar computer: an Olivetti M290. 



The subjects of this study were two male athletes, trained for different 
track and field events: athlete A is a race walker, athlete B is 400 m hurdles 
runner. They were asked to perform the basic and technical movements as 
reported below. 

The training background of the two subjects, ensured the correct execu- 
tion of the movements with high technical content. 

Athlete A: 
WAL. =walking at natural cadence; 
R.W. =race walking at competition speed; 
JOG. = running at warm up speed. 

Athlete B: 
SPR. = sprinting; 
V J .  =vertical jump; 
D.J. = drop jump; 
B J. =broad jump; 
STA. =starting from blocks, push off leg; 
HUR. =hurdle overcoming, leading leg; 
L.L. =take off exercises for long jumpers, leading leg. 
Five reflective markers were fuced on the following anatomical points of 

the lower limb, chosen in order to permit the description of its kinematics 
through a four link model: 

marker 1 on the iliac crest; 
marker 2 on the head of the femur; 
marker 3 on the knee joint center of rotation; 
marker 4 on the external malleolus; 
marker 5 on the 5th metatarsal head. 

RESULTS AND DISCUSSION 

The exercise performed by the athletes describe a relatively large band of 
the human locomotion, as the peak values of speed amplitude measured 
onmarker 1, the marker ofthe model nearest to the center of gravity, range 
from 2 d s  (walking) to 7.7 mls (sprinting). 

The results of the study are reported in the histograms of Figure 1,2,3, 
4, and 5 where three cut off frequencies are shown for x and y coordinates 
of each marker. Black histograms represent the frequencies at which the 
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signal to noise ratio falls under 50, this is also the filter cut off frequency 
that neglects 1% and 0.5% of the signal power. 

The results indicate numerous effects of the movement on the cut off 
frequency (frequency content) of each marker, moreover there are sig- 
nificant differences among the signals of the five anatomical points during 
the same movement, and between x and y coordinates of each marker 
during the same movement. The results will be discussed under respective 
sectional headings. 
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Cut offfrequency at 0.5% of signalpower 

The means and standard deviations of the five markers cut off frequency 
at 0.5%, reported in Table 1, demonstrate higher values in race walking 
(6.92 Hz) along the y axis and in vertical jump along x axis (4.84 Hz). The 
lowest values are from broad jump along both the axes (x = 2.88 Hz, y = 

All the movements have a lower cut off frequency along the principal 
direction of progression that is the x axis, and the same is true for marker 
coordinates of vertical jumping that evolves in the vertical direction. 

The standard deviations range from 0.32 to 2.2 Hz for the x cut off fre- 
quencies and from 0.21 to 1.50 Hz for the y. 

This result underlines differences of frequency content, varying from 
0.6 to 5.2 hZ, among the five markers of the lower limb during the same 
movement. The largest differences may be seen between markers 5 and 2 
during vertical jump (x axis) and between markers 3 and 4 in race walking 

y cut off frequency of the same marker. They vary from marker to marker, 
and depend on the movement. The highest delta is shown by the knee 
marker during race walking (6 Hz) and the lowest by the fifth metatarsal 
head marker during jogging. All these observations emphasize the need to 
perform the filtering procedure with cut off frequency varying in relation 
with the kind of movement, the marker position and coordinates. 
Cut off frequency at 170 signal power 

Similar considerations may be drawn when the cut off frequencies at 170 
of the signal power are analysed. Obviously, in this case, all the values are 
lower, as consequence of the larger amount of power neglected. 

The difference between the frequencies ranges from 0.2 to 2 Hz, for the 
same condition, and there is the trend to have the higher differences, when 
the cut off value is high. 

The analysis of the cut off frequency at 1% of signal power has been 
preformed in order to be sure that the cut off at 0.5% was correct. The 
small differences observed between these two values demonstrate a con- 
sistency in the method used. 
Filter cut ofl frequency 

I Table I1 shows means and standard deviations of the five markers filter cut 
off frequencies, computed with the method proposed by D' Amico and Fer- 



When the data are compared with those of Table I, it is possible to see 
that the filter always acts beyond the frequency which bound the 99.5% of 
the signal power. 

This fact points out that the instrumentation used with its accuracy, al- 
though working at only 50 Hz of sampling rate, is appropriate. In fact, al- 
ways more than 99.5% of the signal was considered for derivative computa- 
tions, nevertheless a good signal to noise ratio was guaranteed. 

TABLE I 
Mean values and standard deviations of the cut off frequencies bound- 

ing the 99.5% of signal power. 

TABLE I1 

Mean values and standard deviations of the filter cut off frequencies. 

X sd Y sd 

WAL. 5.08 1.26 5.72 1.41 
R.W. 8.48 0.70 9.14 2.32 
JOG. 
SPR. 
V.J. 
D.J. 
B.J. 
STA. 
HUR. 
L.L. 
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