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This paper describes the mathematical model of a derivative of a skateboard known as 
the snakeboard. Equations of motion of the model are derived and their analytical and 
numerical investigations are fulfilled assuming harmonic excitation for the angles of 
rotation by feet and a torso of the rider. The possibility of the forward motion for the 
snakeboard is analyzed.  
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INTRODUCTION: The Snakeboard (Figure 1) is one of the modifications of a well-known 
skateboard. It allows the rider to propel himself forward without having to kick off the ground. 
The motion of the snakeboard becomes possible due to specific features of its construction 
and due to the special coordinated motions of the rider’s feet and body. The first snakeboard 
appeared in 1989 and from this moment many fans among the amateurs of extreme sports it 
has found. Soon after the invention of a snakeboard the first attempts to describe the basic 
principles of motion have been made. The basic mathematical model for the snakeboard has 
been proposed by Lewis et al. (1994). In this paper we give the rigorous mathematical proof 
of the conditions for the forward motion of a snakeboard. 

 
Figure 1: The Snakeboard. (Reproduced from Smith et al., (1991)). 

The snakeboard consists of two wheel-based platforms upon which the rider is to place each 
of his feet. These platforms are connected by a rigid crossbar with hinges at each platform to 
allow rotation about the vertical axis. To propel the snakeboard the rider first turns both of his 
feet in. By moving his torso through an angle, the snakeboard moves through an arc defined 
by the wheel angles. The rider then turns both feet so that they point out and moves his torso 
in the opposite direction. By continuing this process the snakeboard may be propelled in the 
forward direction without the rider having to touch the ground. 
 
METHODS: MATHEMATICAL MODEL AND EQUATIONS OF MOTION: The mathematical 
model of the snakeboard considered in this paper is represented in   Figure 2. We assume 
that the snakeboard moves on the xy  plane and let Oxy be the fixed coordinate system with 
origin at any point of this plane. Let x and y be the coordinates of the system centre of mass 
(point G ) and θ  is the angle between the central line of the snakeboard and the Ox -axis. In 
the basic model treated by Lewis et al. (1994) the platforms could rotate through the same 
angle in opposite directions with respect to a central line of the snakeboard (in other words, 
for the model described by Lewis et al. (1994) we have ϕ ϕ ϕ= − =f b , see Fig. 2). We 
suppose that platforms can rotate independently and their positions are defined by two 
independent variables ϕf  and ϕb . The motion of the rider is modelled by a rotor. Its angle of 
rotation with respect to the crossbar is denoted by δ .  



 
Figure 2: The Mathematical Model of the snakeboard. (Image modified from Lewis et al. (1994)). 

Further we describe the motion of platforms using new variables ψ1 and ψ 2  connected with 
variables ϕf and ϕb by relations: 
 ψ ϕ ϕ= −1 f b ,      ψ ϕ ϕ= +2 f b . 
If ϕ ϕ≠ ≠ 0f b  then there is a point on the line passing through a crossbar which has a zero 
lateral velocity and hence only the velocity along the crossbar. We denote this velocity by V . 
Control of the Snakeboard is realized by rotations of the platforms through ϕf  and ϕb and by 
rotation of the rotor throughδ . Therefore we assume that the variablesδ , ψ1  and ψ 2  are 
known functions of time  i.e. t
 ( )δ δ= t ,    ( )ψ ψ=1 1 t ,     ( )ψ ψ=2 2 t . 
These variables are the controlled variables in this problem.  
Parameters for the problem are: 

bm : the mass of the crossbar; 

rm  : the mass of the rotor; 

pm  : the mass of every platform (we assume the platforms are identical); 
= + + 2b rm m m mp  : the total mass of the system; 

bJ : the moment of inertia of the crossbar; 

rJ : the moment of inertia of the rotor; 

pJ : the moment of inertia of every platform; 
l : the length from the board’s center of mass to the location of the wheels; 
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Equations of motion of the considered model of a snakeboard have the form (Kuleshov, 
2007): 
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Equation (2) determines the dependence of the velocity on the controlled variablesV ( )δ t , 

( )ψ1 t  and ( )ψ 2 t . Suppose that ( ) = =00 0V V . Then the solution of equation (2) can b  e
written as follows: 
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Having the expression for  we obtain from the third equation of the system (1) 
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Using this formula we can obtain from the first two equations of the system (1): 
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Thus, the problem of a Snakeboard dynamics at arbitrary controlled variables

 

( )δ t , ( )ψ1 t  
and ( )ψ 2 t is completely solved in terms of integrals (3)-(5). However the calculation of these

 vari les. 

 
integrals for given controlled variables and the analysis of the exact solution is a rather 
complicated problem. Below we assume the harmonic excitation for the controlled ab

RESULTS: Observations of actual snakeboard riders suggest that sinusoidal inputs provide 
a good starting point for our investigations: 

 ( )δ ω= 0 0sina t ,   ( )ψ ε ω=1 1 1sina t ,   ( )ψ ε ω=2 2 2sina t . 

 Here ε  is a parameter. We assume that ε  is sufficiently small such that for the angles ψ1 
and ψ 2 the following approximate formulae 
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are valid. In other words, we will neglect the t
2

erms of order higher than the second on the 
arameter εp . This assumption is completely justified by the snakeboard construction.  
he snakeboard is assumed to have its initial condition at  origin in the space state, i.e. T the

 ( )0 0x = ,   ( )0 0y = ,   ( )0 0θ = . 
Taking into ccount all these assumptions we have the following simplified formula f a or the 
velocity ( )V t : 
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This integral will be a periodic function except the case 
0 1 2ω ω ω ω= = = .  

In this case the velocity  is a linear function of time: ( )V t
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Thus we can formulate the main principle o
s

f a Snakeboard dynamics: to propel the 
nakeboard forward the rider should rotates his torso and his feet so that the frequencies of 

rotation by a torso and feet would be equal. 
From the third of equations (1) an approximate formula for ( )tθ has the form: 
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Figure 3: Trajectory of the snakeboard’s center of mass. 

 
Obviously, the function ( )tθ as well as ( )V t is a linearly growing function of time. Therefore 

 a time interval of order 1
ε  the angle θ  remains proportional toεin . Thus in this time interval 

we can consider θ  as a small angle. For small values of θ  we have for ( )x t  and ( )y t : 
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Fig. 3 shows the trajectory of the snakeboard’s center of mass in the considered case.  
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CONCLUSION: In this paper we found the condition for the forward motion of a snakeb
e have proved that the rider propels the snakeboard forward using the 1:1 resonW

between two frequencies: the frequency of rotation by a torso and the frequency of rotation 
by feet. These two frequencies should be equal. 
Other snakeboard gaits have been investigated numerically in (Lewis et al., 1994) and 
analytically in (Kuleshov, 2007). It can be proved that every snakeboard gait can be achieved 
by a corresponding choice of resonant condition between the frequencies of rotation by a 
torso and feet. These results will be helpful for all people who makes the first steps in a 
snakeboard riding. 

REFERENCES: 

Chaotic Dynamics
Lewis, A.D., Ostrowski, J.P., Murray, R.M. & Burdick, J.W. (1994). Nonholonomic Mechanics and 
Locomotion: the Snakeboard Example. Proceedings of the IEEE ICRA, 2391-2400. 
Smith, E.O.M., Fisher J., King S. (1991). Skateboard. United States Patent USD338253. 
http://www.freepatentsonline.com/D338253.pdf  


