EFFECTS OF FREE WEIGHTS AND FREE WEIGHTS WITH ELASTIC BANDS ON POWER DEVELOPMENT DURING A BENCH PRESS

¹Tony Reynolds, ¹Alfred Finch, and ²Gideon Ariel

¹Biomechanics Laboratory, Indiana State University, Terre Haute, Indiana. USA ²Ariel Dynamics, San Diego California, USA

KEY WORDS: weight lift, elastic bands, power development

INTRODUCTION: The purpose of this study was to examine the effects of the use of elastic bands in addition to free weights on power development while performing a bench press at maximal speed.

METHODS: Eight healthy division AA football players from Indiana State University were tested for their 1 RM during a bench press after signing an informed consent. On 2 testing sessions with 3 days rest, the subjects performed bench presses for maximal speed that consisted of 3 trials of 2 repetitions with 45% of their 1RM load and on the other test day the subjects used a similar weight but elastic sport bands were attached to each end of the bar. A tension load cell was used to determine the elastic stiffness of the band and the elastic range of the bands. Videographic records were recorded at 60 Hz from a transverse view of the subject performing a bench press. Data point markers representing the body's lifting configuration were digitized, transformed using a 2D-DLT, and digitally smoothed at 10Hz.

RESULTS & DISCUSSION: The subjects' mean weight was $90.6 \forall 11.3$ kg, their mean bench press 1RM was $162.5 \forall 23.4$ kg and their testing weight which represented 45% of their 1RM was $75.6 \forall 9.9$ kg. Statistically significant different mean vertical bar velocities of $115.6 \forall 15.3$ for the free weight (FW) condition and $87.8 \forall 14.1$ cm.s⁻¹ for the compensatory band method (CM) were found (p=.001) (Figure 1). The mean peak bar power for the FW condition during the bench press was $103.2 \forall 31.6$ W and the elastic band group was $113.9 \forall 33.5$ W (p=.13). Although not statistically different, the elastic band group averaged 9.5% more peak power per lift. Significant differences (p=.001) in the mean bar power existed with the FW group generating a mean power of $74.5 \forall 19.1$ W and the band group produced $92.3 \forall 23.6$ W during the accelerative phase of the lift. This indicated that the addition of bands to the free weight, increased the power generation by 19% during the accelerative phase of the lift revealed significantly greater (p=.02) mean power output $89.2 \forall 21.4$ W (29%) for the elastic band assisted lifts than the FW ($63.4 \forall 23.6$ W) (Figure 2).

Figure 1: Peak Vertical Bar Velocity (cm*s⁻¹)

Figure 2: Mean Bar Power (W)

CONCLUSIONS: The use of the elastic bands produced increases in the peak power output 9.5%, 19% mean power output during the accelerative phase, and 29% mean power during the decelerative phase of the bench press which would be beneficial for athletes participating in throwing events where high terminal velocities with weighted objects are desired.