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The purpose of this study was to develop an ankle sprain recognition system which 
identifies ankle sprain motions from other normal motions. Six healthy male subjects 
performed a total of 600 simulated ankle sprain motions and normal sports motions. Eight 
motion sensors were attached to cover the whole foot segment to monitor the linear 
velocity and angular accelerations of the segment. The data obtained from the motion 
sensor at the medial calcaneus selected to train up the Support Vector Machine (SVM). 
The trained SVM model was then verified by another 600 trials from other six healthy 
male subjects. Among the 300 sprain trials, 291 (97.0%) of them were identified correctly. 
However, there was still a 14.3% false alarm which normal trials being identified as sprain 
trails. In general, a good accuracy of 91.3% was achieved. 
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INTRODUCTION: Ankle sprain is one of the most common ankle injuries in sports (Fong et 
al., 2007), accounting about 12% of total sport-related cases admitted to the accident and 
emergency department (Fong et al., 2008). In order to protect the ankle from sprain injury, 
our research team is developing an intelligent sprain-free shoe. The idea of the sprain-free 
shoes is to protect from ankle sprain injury while allowing freedom of motion during normal 
activities. The sprain-free shoes consist of a recognition system which identifies ankle sprain 
motion to activate the protection mechanism while the ankle is at risk of sprain injury. In this 
paper, the ankle sprain recognition system using motion 
sensor and Support Vector Machine (SVM) is introduced. 

  

METHODS: Data Collection: Six male subjects (age = 21.2 
± 1.7 yr, height = 1.72 ± 0.05m, body mass = 61.5 ± 3.1kg, 
foot length = 255.3 ± 10.6mm) with healthy ankles were 
recruited. The university ethics committee approved the 
study. Each subjects contributed to 100 trials, including 50 
trials of simulated ankle sprain motion and 50 trails of non-
sprain normal motions. The simulated sprain motions were 
conducted on a mechanical ankle sprain simulator (Fig 1, 
Chan et al., 2008). Different combination of inversion and 
plantarflexion (total inversion, 23 degrees supination, 45 
degrees supination, 67 degrees supination and total 
plantarflexion) were performed. The sprain simulator 
performed 30 degrees angular perturbation along the 
rotation axis when the shutter released. Non-sprain motion 
included walking, running, jump-landing, cutting and 
stepping-down were performed in a random sequence in a 
motion laboratory. Ten trials from each motion were done. 

 
Fig 1: A subject performing 
simulated sprain motion on 
a mechanical ankle sprain 
simulator 

 



Eight wired motion sensors (Sengital Ltd., 
Hong Kong, China) were attached as 
shown in Figure 2. These attachment 
positions allowed a full coverage of right 
foot and ankle segment. Each motion 
sensors consisted of a tri-axial gyrometer 
which measured angular velocities (Gx, Gy, 
Gz), and a tri-axial accelerometer that 
measured linear accelerations (Ax, Ay, Az). 
Therefore a total of 48 signals from all 
sensors were collected at a frequency of 
500Hz. 
 
Data Analysis: The data collected were 
used to train up the Support Vector 
Machine for the development of the 
identification system. The learning theory 
of SVM can be expressed as a function:  

Fig 2: The attachment of the 8 motion sensors  
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Where y = f(x). This function maps patterns x to the classification y. the function f(x) can be 
expressed as: 
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where N is the number of training patterns,  is training pattern i with its classification 
as , 

),( ii yx

iy iα  and  are learned weights, and k is a kernel function (Cristianini & Shawe-Taylor, 
2000): 
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k can be any symmetric kernel function that satisfy the Mercer’s condition corresponds to a 
dot product in some feature space (Bernhard et al., 1998).  with ),( ii yx 0>iα  are denoted 
as support vectors. The surface where 0)( =xf  is a hyperplane through the feature space 

as defined by the kernel function. Optimal parameters iα  and  are selected to minimized 
the number of incorrect classifications by maximizing the distance of the support vectors to 
the hyperplane 

b

0)( =xf .  indicate a simulated supination sprain trail, where 0>iy 0<iy  
indicate a non-sprain trial. 
 
Maximize: 
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The constant C denotes the penalty to errors, therefore it affects the tolerance to incorrect 
classifications. After solving the equation (2) and find iα , we can use any other support 
vector  to find b . ),( ii yx
 
A value of signal strength (unitless) was calculated for each of the eight sensors to quantify 
its ability to identify the spraining and non-spraining motions. SVM training was then done 
with the data from the motion sensor with highest signal strength. One second (500 frames) 
of data from all the six channels of that sensor were processed by Discrete Fourier 
Transform (DFT) and was converted to frequency domain. The converted data was then 
used to train up the SVM (Joachims, 1999). 
 
Model Validation: Another six subjects (age = 22.0 ± 1.7 yr, height = 1.75 ± 0.04 m, body 
mass = 69.7 ± 2.8 kg, foot length = 262.0 ± 9.9 mm) took part in the validation test and 
contributed to a total of 600 trials. The same protocol was done for data collection as in the 
previous part. The accuracy of the recognization system was calculated by the percentrage 
of trials being correctly identified. The SVM training was considered successful when the 
accuracy reached 90%. If the SVM training was not successful, the training process would be 
performed again with the sensor with the second highest signal strength and so on. If SVM 
training with a single sensor was not successful, combinations of two or more sensors will  
be performed. 

RESULTS: The sensor located at medial calcaneus was found to possess the highest signal 
strength among all the sensor location. Therefore, data from the sensor located at medial 
calcaneus were chosen to train up the SVM. After training the SVM with 600 simulated sprain 
and non-sprain trials, 521 support vectors and the threshold b = 0.46397071 were selected to 
built up the SVM model in equation (1). 
 
The SVM model was then went through the validation test. 600 trails simulated sprain and 
non-sprain trials from another six subjects were feed into the SVM model. 548 out of 600 
trials were identified correctly. Therefore the accuracy was 91.3%. Details of results of 
validation test were shown in table 1. The SVM model built was considered successful, and 
further training using other data was abandon.  

Table 1 Results of validation test 

 Correctly identified trials Incorrectly identified trials Total 
Simulated sprain trials 291 (97.0%) 9 (3.0%) 300 (100%) 
Non-sprain trials 257 (85.7%) 43 (14.3%) 300 (100%) 
Total 548 (91.3%) 52 (8.7%) 600 (100%) 

DISCUSSION: 
There was 91.3% accuracy for the trained SVM model which was considered to be very good 
for biomechanics studies. For the 300 simulated sprain cases, 291 trials (97.0%) were 
identified correctly. As this device is going to act as the activation signal of the intelligent 
sprain-free shoes, the alarm can be activated at 97% of the cases while the ankle is at risk of 
sprain motion. However, for the 300 non-sprain cases, there were 43 trials incorrectly 
identified trials, which made the false alarm rate be 14.3%. This indicates a gap and needs 
for improvement.  
 
In order to improve the accuracy, data from two or more sensors can be adopted to train up 
the SVM model. The trade off of using more than one sensor is the increased amount of data 
to be processed. Hence, the process time and system requirement will be increased. 



Therefore we have to make a balance between accuracy and process time. On the other 
hand, the SVM model developed was for young male subjects. In order to fit the model to 
individual of different homogenous groups, the whole procedure can be repeated. Therefore, 
we can come up with different SVM models which suits different homogenous groups. 
 
The current recognition system only allows data processing after data collection, but not real 
time recognition. Data trimming and discrete fourier transform were need to be done after 
data collection. In order to achieve real time identification, further investigation has to be 
done on immediate analysis. Application of sliding window would be possible approach.  The 
SVM model real time data analysis can be built on a printed circuit board. The wireless 
prototype can be made at a cost of around US$100. In order to lower the production cost for 
mass production in the future, further investigation have to be done, for example, reducing 
the sampling rate of the sensor and sliding window, which can lower the cost of the sensor, 
as well as the processing unit of the recognition module. 
 
All the simulated sprain motion was performed on a mechanical sprain simulator. The sprain 
simulator can only perform sub-injury motions instead of real sprain cases due to ethical 
reasons. No ligamentous injury was introduced. Therefore we could only rely on the 
simulated sprain motion which is less vigorous to train up the SVM model.  

CONCLUSION: This study developed an ankle sprain recognition system which identifies 
ankle sprain motions from other normal motions. The system consists of one motion sensor 
of 500 Hz sampling frequency and a recognition model. An accuracy of 91.3% was achieved. 
The system can be further developed for the real time identification of ankle sprain injury in 
the intelligent ankle sprain free shoes. 

REFERENCES: 
Bernhard, S., Burges, C.J.C., & Smola, A. (1998). Advanced in kernel methods support vector learning. 
Cambridge,  MA: MIT Press. 
Chan, Y.Y., Fong, D.T.P., Yung, P.S.H., Fung, K.Y. & Chan. K.M. (2008). A mechanical supination 
sprain simulator for studying ankle supination sprain kinematics. Journal of Biomechanics. 41(11), 
2571-2574. 
Christianini, N., & Shawe-Taylor, K. (2000). An introduction to support vector machines. Cambridge, 
UK: Cambridge University Press. 
Fong, D.T.P, Hong, Y., Chan, L.K., Yung, P.S.H., Chan, K.M. (2007). A systematic review on ankle 
injury and ankle sprain in sports. Sports Medicine, 37(1), 73-94. 
Fong, D.T.P., Man, C.Y., Yung, P.S.H., Cheung, S.Y., Chan, K.M. (2008). Sport-related ankle injuries 
attending an accident and emergency department. Injury, 39(10), 1222-1227. 

Acknowledgement 
This research project was made possible by equipment/ resources donated by The Hong Kong Jockey 
Club Charities Trust. 
We would like to acknowledge Dr Alan Lam and Mr Joe Wong from the Sengital Limited, Hong Kong, 
China for the development of the motion sensors. 


