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The purpose of this study was to develop a simulation model for stick balancing. 
Experimental result served as a guide for the developing progress. The progress started 
with a deterministic approach. We solved the Euler-Langrange equation and received the 
equation of motion. The controlling variable within this equation is the acceleration of the 
lower end of the stick. This parameter depends on the balancing strategy and ability of 
the human subject. We chose the van der Pol equation as an ansatz for describing it. A 
second attempt included the incorporation of a time delayed parameter. The third form 
included additional stochastic noise. We found close similarity between the measured 
and the calculated parameters tilt angle at reversal points, frequency expectation value, 
and others.  
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INTRODUCTION: Balance is an ability to maintain the center of gravity of a body within the 
base of support with minimal postural sway (Shumway-Cook, Anson et al. 1988). It is an 
essential feature for achievement in most human movement tasks. For the analysis of stick 
balancing we define two tilt angles. Those tilt angles and the respective angular velocity 
revealed to be connected with the acceleration of the lower end of the stick. These 
interrelations together with a characteristic sway frequency seemed to be the main 
ingredients for successfully balancing a stick. In this study we developed a simulation model 
based on this context. We draw a comparison between the result from the experiment and 
the simulation to check the degree of concordance.  
 
METHODS: The movement situation is depicted in Figure 1. From the experiment we know 
there exist a moderate connection between the two tilt angles. However, for this study we 
decided to restrict the analysis to one plane of motion, the x-y-plane with x as the horizontal 
axis and y the vertical axis. The associated angle is β  which is defined in equation (1.1). 
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We used the Hamilton principle respectively the 
Euler-Lagrange equation to derive the equation of 
motion. The stick was treated as a one-dimensional 
object of length 1 m with its mass evenly distributed 
along a strait line with the center of gravity 
symmetrically between the upper and lower ends. 
The Lagrange function is given in equation (1.2) with 

 the kinetic energy containing T 21
2v CoGv= ⋅T m  being 

the translation and 1
2

TT Iω β β=
r r& &  the rotation part. V  

stands for the potential energy. Here l  is the stick 
length, m  the stick mass, I  the inertia tensor, vCoG

r
 the velocity of the stick’s center of  

β  

x 

y 

z 

α  

lower marker 

upper marker 

Figure 1: Stick with marker 
arrangement 

 ( ) ( ) ( )
2

2 2 2 2 21 1cos sin cos
2 4 24

vL T V T T V

l lm x y xl yl ml mg

ω

2
β β β β β β β

= − = + −

⎛ ⎞
= + + − + + −⎜ ⎟

⎝ ⎠
& & & && & & &

 (1.2) 



gravity, 29.81m
sg =  the gravitational acceleration, and β  the tilt angle as defined above. The 

Euler-Lagrange equation (1.3) 
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leads to the sought equation of motion (1.4). Here the mass of the stick canceled out. The 
remaining attribute of the stick is the length l . For practical reasons in an experiment with 
human subjects mass does play a role. If there is too much mass the subject cannot 
accelerate the finger holding the stick fast enough, if the stick is too light a subject will have 
problems to “feel” the movement. However, within a transition range mass does not greatly 
influence the outcome.  
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As a simplification, from here onwards y&&  is suppressed and we are left with the angular 
acceleration in the form of equation (1.5).  
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We are simulating balancing with the vertical coordinate of finger being constant. The 
angular acceleration β&&  is depending on , g β , and eminently on x&& .  is constant, g β  we 
are going to calculate, but the most important parameter is the acceleration x&& . This is the 
acceleration of the finger and as such exclusively depending on a subject’s performance. We 
are developing an iterative solution (1.6) by writing down the first three terms of a Taylor 
series.  
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Here 0β&  is the angular velocity at  and  the step length of the iteration. 0t = tδ x&&  necessarily 
must allow for a stable result. It must also take into account the empirical relationship 
between β , β& , and x&& . Such an ansatz we found in the van der Pol equation (Goldobin, 
Rosenblum et al. 2008), which we write here in the form of equation (1.7). 
 ( )1 bx 2μ β β β μ β= ⋅ − ⋅ − ⋅&&&  (1.7) 

Here 1μ , 2μ  and bβ  are constants. Putting (1.7) into (1.5) leads to a deterministic equation. 

In a next attempt (1.8) time delay is included through the substitution ( ) ( )t tβ β τ→ −& & .  

 ( ) ( )bx tμ β β β τ ν β= ⋅ − ⋅ − − ⋅&&&  (1.8) 
The solution number three (1.9) introduces stochastic components.  
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( 1 1,ξ μ σ  respectively ( 2 2, )ξ μ σ  represent normal distributed stochastic noise with the first 
parameter being the mean and the second the square root of the variance. One of our test 
parameters is the Frequency expectation value. It is defined as 
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Here ν  is the frequency, ( )F ν  the Fourier transform of β , and sν  the sampling frequency.  
   
RESULTS: All iterations were done with  seconds. For the deterministic ansatz 0.005tδ =
(1.5) the iteration returns, as expected, a stable solution Figure 2. There is a transition time, 
when the movement amplitude changes from the initial value of 1° at an angular velocity of 



zero as well as an initial acceleration of zero towards a stable situation. Afterwards, the 
solution is stable at a period two with a frequency of 0.61 Hz and absolute amplitude of 1.99 
°. 
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Figure 2: Space-time (left) and phase-space (right) diagrams of a deterministic configuration 
with 1 1μ = , 2 10μ = , and 1bβ =  
We delayed the angular velocity term of (1.7) to arrive at (1.8). (t )β τ−&  is delayed with 

. Again, after a transition time, we got a stable two period (0.15sτ = Figure 3) with a slightly 
higher amplitude of 2.09 ° at a frequency of 0.84 Hz.  
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Figure 3: Space-time (left) and phase-space (right) diagrams of a deterministic configuration 
with time delay  0.15 secτ =
In the next step we altered (1.8) by adding normal distributed stochastic noise and arrived at 
equation (1.9). ( , )ξ μ σ  represents the normal distributed noise. The first parameter in the 

bracket stands for the mean (as above 1 1μ =  and 2 10μ =

2 10σ =
), the second for the standard 

deviation. Figure 4 shows a simulation with  and .  1σ = 1
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Figure 4: Space-time (left) and phase-space (right) diagrams of a deterministic configuration 
with time delay  and normal distributed noise 0.15 secτ =
We still receive a fairly stable result. The maximal and minimal value of the amplitude within 
a cycle is not constant anymore, but still with just moderate variations. The mean frequency 
again slightly increases to about 0.88 Hz with a variation in the order of ± 0.1 Hz. The  
variables for a comparison between measurement and simulation are given in  
Table 1. 



 
Table 1:  Simulation-measurement co u par
Paramet Determin Delay S Mea

mparison of fo r different ameters 
er / Simulation istic ed  tochastic surement 

β  [°] for the reversal points 1.99 2.09 2.16±0.13 2.38±1.41

Correlation coefficient xβ &&  0.94 0.95 0.75 0.53±0.09
Time shift to r  being maximal [s] 0.41 0.30 0.28 0.13±0.03
Frequency expectation value [Hz] 9.78 6.06 3.81 7.82±3.32
 
DISCUSSION: The mean tilt angle β  for the reversal points is in the right range around 2 °. 
However, the variation in the simulation results is much smaller than those of the 
measurements. This hints toward an additional source of uncertainty that is not represented 
by the equations used in this simulation. The other parameters derived in the simulation, 
correlation xβ && , time shift, and frequency expectation value are close to those of the 
measurement. Still, eviations do occur. We varied the tim delay to react towards an 
increased tilt angle 
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freely available on the internet at www.uni-
konstanz.de/FuF/SportWiss/vieten/Software/. 

 
CONCLUSION: The presented work is a first step towards a proper simulation. The 
equations allow quantifying the effects within the arrangement. We are able to figure out the 
influence of the deterministic part compared with the stochastic components. All these 
findings give confidence for an enhanced model and pos
s
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