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The purpose of this symposium is to present recent developments in biomechanical 
data analyses in two areas. First, current methods used in a dynamical systems 
approach will be described. Second, two statistical approaches, Principal Components 
Analysis and Functional Data Analysis, will be presented. The emphasis in this 
symposium will be on how to use each of these recent analysis techniques. 
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INTRODUCTION: 
 
Biomechanics has progressed significantly from both technological and analytic 
viewpoints. The development of new technologies has allowed biomechanists to become 
ever more sophisticated and ask much more complicated questions. It has also allowed 
biomechanists to generate large quantities of higher dimensional data. In this 
symposium, we will present approaches to the analysis of biomechanical data from two 
perspectives that are not in common use in biomechanics research. First, we will present 
methods of analysis that are used in a dynamical systems approach. Second, we will 
present two statistical methods that can be used to analyze large sets of continuous 
data. 
 
DYNAMICAL SYSTEMS (Van Emmerik, Miller and Hamill): 
 
The goal of this presentation is to present a review of current methods in the assessment 
of movement coordination from a dynamical systems perspective (Glass, 2001). The 
data analysis techniques that will be presented are essential in the assessment of 
stability and adaptability of movement patterns. These techniques are also important in 
assessing the role of movement variability in expert performance, learning/development 
and disease. Although traditional perspectives in biomechanics and motor control have 
highlighted the negative role of movement variability, dynamical and complex systems 
approaches have emphasized the functional role of variability in creating adaptive and 
stable movement patterns.  
 
Measures of movement coordination that will be presented include relative phase and 
vector coding techniques (Hamill et al., 2000; Chang et al., 2008). Vector coding analysis 
of coordination has been primarily applied to angle-angle diagrams of lower extremity 
segmental or joint motions during locomotion. Relative phase techniques have 
traditionally been applied to bimanual coordination and lower and upper body 
movements during locomotion. Both continuous and discrete relative phase techniques 
will be discussed. Discrete relative phase (DRP) is a valuable tool to assess more 
complex coordination patterns containing multiple frequencies, as for example in the 
coordination between the respiratory and locomotor systems. Continuous relative phase 
(CRP) techniques are based on higher dimensional state space reconstructions 
(position/velocity phase plane). Issues that will be discussed in CRP analysis will include 
normalization of the phase plane and the use of circular statistics in the assessment of 
coordination patterns. Also, a comparison of the different coordination measures and 
their limitations will be provided.  
 



Movement coordination is also strongly associated with the perceptual variables that 
may play a role in the detection of stability boundaries for upright stance or during 
locomotion. It is argued that a stronger emphasis on these perceptual variables is 
needed to assess conditions prone to postural instability. This presentation will discuss 
research that highlights the importance of a systematic investigation of the role of 
perceptual control variables such as time-to-contact (Haddad et al., 2006) as a 
necessary prerequisite to understand postural and gait control. 
 
The final part will include a review of new ‘complexity’ methods to assess the structure 
and variability of human movement. These techniques include different measures of 
entropy, fractal structure and recurrence quantification analysis (RQA). Complexity 
analysis has been used to demonstrate changes in movement coordination and use of 
degrees of freedom as a function of development, disease and movement expertise. 
 
STATISTICS: 
 
The development of highly sophisticated data collection tools in many real-world 
applications (e.g. biomechanics, imaging, etc.) has resulted in the production of high 
dimensional data. In order to analyze these data sets, two statistical approaches have 
been proposed: 1) principal components analysis (Jolliffe, 2005; O’Connor and Bottum, 
2009; Wrigley et al., 2006); and 2) functional data analysis (Ramsay and Dalzell, 1991; 
Ramsay and Silverman, 2002). In the symposium, the same data set will be analyzed to 
contrast the two approaches. 
 
Principal Component Analysis (O’Connor and Hamill):  
In a Principal Components Analysis (PCA), the time series of each trial serves as input. 
PCA can be utilized to identify the dominant modes of variation within waveforms. This 
approach allows examinations of time series data without making a priori assumptions 
regarding critical dependent variables, such as maximum or minimum angles.  This 
technique can also illuminate patterns that may not be readily obvious in examining the 
original waveforms.  In order to facilitate data processing, each trial is time scaled to 101 
data points. An n x p matrix is created with n = the number of time series and p = 101.  
The analysis is performed through an eigenvalue analysis of the covariance matrix, S101 X 

101 which yields eigenvectors (U101 X 101) and eigenvalues (L1 X 101).  The eigenvector 
matrix, U101 X 101, contains the coefficients for each of the 101 principal components (PC) 
that are extracted. The eigenvalue matrix, L1 X 101, contains the relative contribution of 
each PC to the total variation. An analysis is then performed to retain only those principal 
components that contribute modes of variation greater than an equivalently sized input 
matrix of randomly generated numbers. The PC scores (Z) for each of the n individual 
times series are calculated by multiplying each individual trial’s variation about the overall 
mean with the transpose of the eigenvector matrix: 
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where x1 X 101 is the mean waveform of all trials.  The Z scores for each retained PC can 
then be compared using traditional statistical techniques (e.g., gender differences). 
 
In order to assess how well the retained PCs represent the original input data, the Q-
statistic is calculated. The Q-statistic is the sum of squares of the residuals between the 
individual trial and the reconstructed profile based on the retained PCs.  A critical Q 
alpha value of 0.05 is used in this analysis. Reconstructed trials with a Q statistic less 
than 0.05 indicate that the original data were adequately represented. 
 



PCA also provides a unique method of investigating between-subject variability. To 
begin, correlations (rij) are calculated between the ith principal component and the jth 
time sample: 
 

j
ij s

r iji LU
=  

 
where sj is the standard deviation at a given time in the input series.  The value rij

2 is the 
percent explained variance across time for a given PC. Summing the variance across 
time provides the ability to separate the overall variation in the data into random and 
deterministic components.  This may provide a powerful new approach to examining the 
nature of movement variability. 
 
Functional Data Analysis (Coffey and Harrison): 
Functional data analysis (FDA) is a statistical methodology used to analyze such data. 
Functional data is usually measured at a discrete number of time points but it is assumed 
that some underlying function generates the observed data (yi1, … yin) for individual 

. A key idea in FDA is that the underlying function is smooth, i.e. pairs of adjacent 
values are “linked” and do not differ in value from each other by a large amount. Thus 
the ordering of the observed values is important. As a result, the basic idea behind FDA 
is to treat the entire sequence of measurements for a particular experimental unit as a 
single functional entity. In addition, FDA often makes use of the derivatives of the curves 
which greatly extends the power of FDA methods and leads to functional models as 
defined by differential equations (dynamical systems). It also facilitates the creation of 
phase plane plots which may prove highly informative about the processes generating 
the functions.  
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As stated above, functional data is typically measured at a finite number of time points, 
possibly with some measurement error. Therefore, the observed values (yi1, … yin) can 
be represented as ijjiij txy ε+= )( , where is a smooth function and)(txi ijε is 
measurement error. As a result, the raw data need to be converted to the smooth 
function . This is achieved using basis function expansions and one of several 
possible smoothing techniques such as regression splines, smoothing splines, etc. 
Regression splines estimate  as a linear combination of K basis functions 

(

)(txi

)(tK

)(txi

),...,(1 t φφ ), e.g. B-splines, Fourier splines, wavelets such that . The 

coefficients are estimated by minimizing 
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Choosing the number of basis functions is important since if K < n the data are 
smoothed, while if K = n the data are interpolated. This is a difficult problem and an 
alternative approach is to use smoothing splines which set K = n (interpolating the data) 
and control any over-fitting using an additional penalty term. The penalty term penalizes 
the curvature of the fitted function and thus curves that are more variable will be 
penalized more than functions that are smoother. The coefficients are now determined 
by minimizing 
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where  is the second derivative (curvature) of  and)(2 txD i )(txi λ is a smoothing 
parameter controlling the trade-off between fidelity to the data and the smoothness of the 
resulting fitted curve. Ifλ is large the fit will be smoother while ifλ is small the fit will be 
less smooth. The figures below display the result of changing the value ofλ . Smoothing 
splines allow the user to have more control over the amount of smoothing that is 
achieved andλ can be chosen using several techniques, e.g. cross-validation.  
 

      

 
Once the raw data have been smoothed, it is possible to carry out further analyses, e.g. 
functional principal components analysis (FPCA), functional canonical correlation 
analysis, functional discriminant analysis, principal differential analysis, functional 
regression, etc. FPCA is an extension of multivariate principal components analysis to 
functional data which determines the main modes of variation in a set of curves. The 
extracted components are now functions rather than vectors, and are used to identify the 
characteristic features of a set of curves throughout an entire time interval. As in the 
multivariate case, the first few functional principal components usually account for the 
majority of the variation in the set of curves providing a way of looking at the variance 
structure which can often be more informative than a direct examination of the variance-
covariance function. Functional principal component scores can also be determined for 
each individual and these provide a means of determining the characteristic behaviour of 
specific cases. They are also useful for identifying outlying observations, i.e. individuals 
who score very differently from the remaining individuals in a sample of curves. 
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