INFLUENCE OF ELECTROSTIMULATION ON HUMAN QUADRICEPS FEMORIS MUSCLE STRENGTH AND MUSCLE MASS

J. Turostowski, G. Cometti, M. Cordano,

INTRODUCTION:

Among all muscle-development modem methods used in the training of sportmen (Cometti, 1989), efectromyostimulition (EMS) is successfuli (Delitto, 1989 ; Dudley, 1991). Recently, the improvement of the maximum voluntary dynamic and isometric torques was measured, as well as the decrease of the time taken to achieve peak torque. The sessions using electromyostimulation were carried out on static or dynamic mode (Portmann et al., 1991). Unfortunately, none of them took the morphological changes in muscle into account with as rigorous a tool as the scanner.

This study has two purposes, first to assess the effects of EMS on the maximal concentric torque of knee extension and secondly to measure the influence on the cross-sectional area of the quadriceps femoris muscle.

METHODOLOGY:

Subjects: 20 physical education students divided into two groups. A study group (20.5 \pm 1.8 years, $70.9 \pm 5.9 \mathrm{~kg}, 177.5 \pm 4.2 \mathrm{~cm}$) trained percutaneously and a control group ($22.5 \pm$ 0.5 years, $81.2 \pm 5.7 \mathrm{~kg}, 184.2 \pm 4.3 \mathrm{~cm}$) trained by voluntary contraction.

Training : the experiment was conducied over seven weeks. five of which were given over to the strength development cycle. The initial tests preceded the training period by one week and the final tests followed it by one week. The two groups made up of 10 subjects followed a rhythm of 3 sessions per week, making 15 in all.

The control group performed a single series of 30 maximum repetitions (approx. 70% of one concentric RM) on quadriceps apparatus broken by 15 -seconds' rest. The study group used a 4 way stimulator outputting a symmetric orthogonal pulse train lasting 0.1 ms at 60 Hz . The session lasted 10 minutes, contractions being applied to the two quadriceps alternately. Each contraction lasted 5 seconds followed by 15 -seconds rest, making 30 contractions for the full session. The working position maintains a $60^{\circ} \mathrm{leg}$ to thigh angle of flexion, enabling the subject lo perform an isometric contraction.

The torque force exerted during each contraction was measured to evaluate relative intensity compared with maximum voluntary contraction. This varied from 25% to 56% for the ten subjects. with an average of 44%.

Maximum voluntary isokinetic torque was measured with a Cybex device according to the protocol laid down by Chateris et al. (1982) to ensure identical knee flexion/extension for any subject. Time to reach torque was computed from the angle at which it was attained. The exercise consisted in extending the leg as powerfully as possible twice in succession. The six selected constant angular velocities were tested from fastest to slowest.

X-ray scanning tomography was used to measure the cross-sectional area of the right thigh quadriceps. Digitized scaled images were attained accurate to one square millimeter with a margin of error of 0.5%. The cross section is 10 mm thick mid-way between the knee cap (patella) and the iliac spine.

Statistical tests: Pre- and post-training mean values were compared within each group using the Wilcoxon non-parametric statistical test. In contrast, variations iu results between each strength training method were validated using another non-parametric statistical test, the Mann Whitney U test. For each test any difference in mean is significant if the probability threshold is at least equal to $p=0.05$ (noted: ${ }^{*}$ and ${ }^{* *}$ is $p=0.01$ or ${ }^{* * *}$ if $p=0.001$).

RESULTS:

The changes in the Maximum voluntary force torque at different angular speeds depending on the training method means the following facts can be noted:
As can be seen on table 1, significant improvement in forque after EMS only occurs at the two slowest speeds: the mean peak shifts approximately from 235 Nm to 257 Nm which is a gain of $9.4 \%(p=0.001)$ at 30% s. it increases by $5.6 \%(p-0.001)$ at $60^{\circ} / \mathrm{s}$. Concentric work is more beneficial to the development of maximum concentric force : $11.7 \%(\mathrm{p}<0.01) \mathrm{at} 30 \% \mathrm{~s}$, $10.7 \%(p<0.001)$ at $60 \% \mathrm{~s}, 11.2 \%(p<0.001)$ at 90% and there is even a gain of 8.8% (p - 0.001) at $180^{\circ} \%$ s, the first of the fast velocities. If we examine the time to reach the peak torque, which was computed, the increase of the time after concentric work occurs for almost

Explosive Index following Concentric Work

Figure 1.

Explosive Index following Electromyostimulation

Figure 2.

	304/s	600/8	\% $0^{6 / 5}$	18.2\%/s	$300 \% / 8$	$360{ }^{3 / 5}$
Torque affer Ems	+9,4\% **x	+5,6\% ${ }^{\text {cxa }}$	$+1,9 \%$	+2,5\%	+0,2\%	+3,3\%
Torque after C W	$+11.7{ }^{\text {\% \% }}$	+10,7\%***	+11,2\%***	+8.58\% ${ }^{* * *}$	+3\%	+0\%
fime to peak Ems	-5,6\%	-2,3\%	$+6,6 \%$	-11.9\% **	-18,9\% ${ }^{* * * *}$	$-24,6 \%$ ***
time to peak CW	-0,4\%	+2\%	+5\%	$+1590 *$	+4,8\%	+5,8\%

Table I: Influence of training on Maximal Concentric Torque and Time to Peak
all velacities，But its anly significant at IE01／s with I5（peovol）It was expected that the impromentent of axambin forque shapes the tine baken to achieve the peak．
On the contrary，trainigg Lsing FMS has made the lime to peak ugnificanty decreasing for the 3 Fandes velocties＝nearly $12 \%(p<001)$ st $180^{2} / 8-182 \%(p<0.001)$ at $300 \% \mathrm{~s}$ und－

In order to relativize this fact by the improvement of maximum torque，we propose a comparisan of the ratio peak torque over time to achieve it this is the explosive index．
In ferms of exploxive prwer strength development，the voluintary contraction of a concentrie work seems to be effective only for very sow vathosities（figure $\left.n^{\circ} \|\right)+5.9 \%(p, 0.05)$ at $30{ }^{\circ}$ ss，The explosive index wonld decrease at high velocities but not significandly．Unlike this Iraditional method．EMS sems to the the most effective work to improve the explosive power
 $300^{\circ} / \mathrm{s}(\mathrm{p}=0.001)$ and +27.7 易 at $360^{\circ} / \mathrm{s}(\mathrm{p}-0.001)$ ．However，the Mann whitney test shades this hypothests because of the fact that concentic worl would increase the explosive index at low velacity in a significant mamer．At last，we miss point out that the computed tomography of the cross－sectional arca shows a sagnificant and substantial hypertrophy：8\％using EMS versus only 2 号 using C．W．

DISCUSSION

Maximuin force test resalls show that volmary coninction is more effective at low speeds． It should be sfecsed that the control group irsined at about 70 粦 of its maximum volunary isometric strengh．While the EMS group，whose contractions ranged berwecn 25% and 56% of the maximum woluatary isometric fores，had a group average of around 44 \％．Compared with earlier squdies，it is hekely that thas low level of work is one caune of lack of progress in terme of strength which can and should be improved on in fidnre．However，the weakness of quadriceps comeractions in electrically stimulated subjecta did nol prevent sizenble hyperrophy being measared for fifteen sessions gpread over five weeks．If can be considered that the training load of vollontary contractions and stimulation cument parameters were nol anmed at exhausting masele resources and so entancing muscular meass For high spesd neeasurement the trend is reversed．Here the inereased eflectiveness and value of electincal stimulation is shown．So much so that there would seem to be，in the ratio improvement of the maximum torque varintiontime to maximum torque variation，saluable method for cespressing and condrolling the etgplosive strength subich in some disciplises：this is the explosive power fachor－

CONCLIISION

To sum up the essence of this work，it can be claimed that the sigmificant results of the experiment point to the lese of electrical stimulation for sponts training if it is dexided to increase overall musele mass while considerably enhancing explosive serength．This supgests it is an excelleat methed for body building of other activitics where it is dificult pe reach this objective during certain maining periods．While awaiting fundamental data that would beller explain such phenomethe，further stodies are neeted to explore panameters for getting the most out of EMS in lerins of hypertrophy and secondly，above sll developing ectentric lraming on top of EMS－ induced matmaph conimation．

BIBLIOGRAPHIE

Chutoris J，COSLIN HR，1982，The effects of position nad movement velocity on isokinetic forte ouphe at knee，Journal of Sports Medicine， $2: 154-156$.
Cometti G，1989，Les methodes modernes de musculation：dqunees théoriques，Precse de I＇Université de Hoarrgagne．TI，pp．I－331．
Delitio A，Drown M，Strube R，Lehman RC，1989，Electrical stimulation of quadricep femoris in elite weight lifter a a single subbet experiment，Intemational Joumal of Sports Medicines， $10: 187-191$ ．
Dudley GiA．，Harris R．T．，1991，Use of electrical stimulation in strength and power iraining．In ：Strengh and power in spori．The encyclopaedia of sports medicine．P．V．Komi， Osford（Fals）1991：329－137．
Portmann M，Montpetit R，199I，Effets de t＇enirainement de la force musculaire par efectrostimulation isometrique et dynanique，scicnce et $\$$ port，6：193－203．

