A MODEL FOR THE SIMULATION OF VISCERAL MASS DISPLACEMENT IN DROP JUMPING

Istok Colja and Vojko Strojnik
Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia

INTRODUCTION

Drop jumps may be mathematically modelled as a mass-spring-damper system with a sufficient accuracy (Aurin and Zatsiorsky, 1984). It was stated that a mass of internal viscera does not affect a maximum jumping height and a frequency of jumping. Minetti and Belli (1994) found visceral mass, which presents 14% of the total body mass, oscillating in an opposite phase than a musculo-skeletal mass düring hopping and thus significantly influencing the jumping height and frequency of jumping, but also an energy consumption as well. The aim of the present study was to assess an influence of the visceral mass on jumping height in a single drop jump by mathematical modelling.

METHODS

The model (Fig. 1) consisted of two masses connected by a spring and damper, where mass m_{2} presented the visceral mass.
Elastic module K_{2} and damping module B_{2} defined an attachment of m_{2} to the other parts of the body. The model was described with two differential equations:
$m_{1}{ }^{*} \ddot{x}_{1}-B_{2}{ }^{*} \dot{x}_{11}+K_{1}{ }^{*} x_{1}-K_{2}{ }^{*} x_{2}=0$
$m_{2} * \ddot{x}_{2}-B_{2} * \dot{x}_{2}-K_{2} * x_{2}=0$
where m_{1} presented the mass of the external container, x_{1} and x_{2} vertical displacements of m_{1} and m_{2} from a position of equilibrium, B_{2} the damping coefficient, K_{1} and K_{2} the stiffness coefficients.

Numerical solution was performed by MATLAB (The MathWorks Inc.). The vertical displacement of the

Figure 1 Scheme of mass-springdamper system centre of gravity of both masses (CG) was calculated by varying K_{2} and B_{2} systematically at constant K_{1}. The value for K_{1} was taken from Aurin and Zatsiorsky, 1984).

Each jump was subdivided into two phases, a contact phase and aerial phase. The maximum jumping height was defined as the apex of the trajectory of CG in aerial phase, calculated by formula : $H_{\text {max }}=v_{0}^{2} /(2 * g)$ where $H_{\text {max }}$ was
the maximum height of CG, v_{0} was velocity of $C G$ at the instant of take-off, g was gravitational acceleration.

RESULTS

Dependence of jumping height on K_{2} and B_{2} is presented in Figure 2.

It became clear that the main response of the system was attained by increasing B_{2} from 0 to $600 \mathrm{Ns} / \mathrm{m}$. Afterwards increased B_{2} didn't influence the jumping height significantly

Figures 3 and 4 show two typical examples of m_{1} and m_{2} velocity during the contact phase. The velocity of m_{2} is presented relatively to the movement of m_{1} in both figures. The first example represents condition in which m_{2} oscillated in a phase shift with m_{1} and where vertical displacement according to m_{1} may be up to 8 cm (Minetti and Belli (1994)). With increasing stiffness of the system, the phase shift between m_{2} and m_{1} become smaller and corresponding jumping height increased as well. The second example represents condition when both masses, m_{1} and m_{2} oscillated in parallel. When the m_{2} is delayed for 0.032 s as in the first example, the jumping height was 0.388 m . When the oscillation became almost parallel ($\Delta \mathrm{t}=0.002 \mathrm{~s}$), the jumping height reached 0.431 m .

Figure 4 M 1 is velocity of mass m_{1}, M2 is velocity of mass m_{2} relatively to m_{1}, at $\mathrm{K}_{2}=3600$ in $\mathrm{B}_{2}=2200$. Vertical dotted line denotes the instant of take-off.

CONCLUSION

With increasing K_{2} and B_{2}, the observed system became more stiff. It seems that damping was a crucial factor for determining the maximal jumping height, because at constant B_{2} the increasing of K_{2} did not influence the changes in jumping height a lot, except at very low B_{2}. Increasing stiffness of the system smaller phase shift between m_{1} and m_{2} as well as the oscillation amplitude of m_{2}. Both of them contributing to the higher velocity at the end of contact phase. With sufficiently high B_{2} and K_{2}, m_{2} would oscillate strictly in parallel with m_{1} and would no longer influence the jumping height (Aurin and Zatsiorsky, 1984). In that case the observed system as presented in Figure 1, could be considered simple as a mass-spring system (Blickhan, R. 1989). Results of the present ștudy indicating the importance for a control of visceral mass movement for maximising the result. In practice, the greater K_{2} and B_{2} can be achieved by increased abdominal pressure.

REFERENCES

Aurin, A.S., Zatsiorsky, V.M. (1984) Biomechanical characteristics of human ankle-joint muscles. Eur. J. Appl. Physiology 52: 400-406.

Minetti, A.E., Belli, G. (1994) A model for the estimation of visceral mass displacement in periodic movements. J. Biomechanics 27: 97-101.

Blickhan, R. (1989) The spring-mass model for runing and hoping. J. Biomechanics 22: 1217-1227

