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THE ANTAGONIST MUSCLE PATTERN IN ELBOW EXTENSION 
OF A THROWING TASK 

1Padro Pezarat-Correia, 2Jan Cabri, 1Padro Santos, 1Ant6nio Veloso 

1Facutty of .Human Kynetics, Technical University of Lisbon, Lisbon, 
Portugal 
2Human Physiology & Sport Medicine, Vrije Universiteit Brussel, Brussel, 
Belgium 

INTRODUCTION 
The myoelectric aetivity of agonist and antagonist muscles in fast human 

movements is eharacterised by a triphasie pattern. The mos\ important 
events are the first agonist activation (AG1) responsible for the initial Iimb 
aceeleration, and the antagonist aetivation (ANT), eoineident with the 
electrical silenee of the agonist muscle, and related with movement braklng. 
If the role of the first agonist burst to the initial limb acceleration is obvious, 
the accurate definition of the antagonist impulse function is not clearly 
definecl on the literature. The ongins of this EMG event have been attributed 
to both peripheral and central sources, but the relative participation of each 
one has also carrled out controversy (Angel, 1977, Marsden et a1., 1983). 
The purpose of the present study was (1) to eharacterise the antagonistie 
pattern on the elbow extension when subjects had to perform an overarm 
throw onto a target, and (2) to analyse the antagonist ehanges when 
subjects throw with different aecuracy/speed requirements. 

METHODS 
Experiments were performed on 13 subjects: 4 skilIed dart throwers and 

9 untralned sUbjects. The task was a dart throw to a concentrie target at a 
distanee of 3 meters. Each sUbject performed on three conditions· wlth 
different constraints: (P) "try to reaeh the target centre", (C) ''try to reach the 
target centre asfast as possible" and (V) "just trv to be as fast as possiblew

• 

Electrogoniometers on shoulder and elbow joints measured position and 
velocity movement parameters on each Joint. Surface EMGs were recorded 
from trieeps and biceps brachil with active bipolar electrodes. The angle, 
velocity and EMG signals were averaged in blocks of 20 trials 
representatives of each condition. 

RESULTS 
The antagonist EMG contained a phasic burst which began between tha 

movement onset and the end of the agonist activation, with an usuaJ 00
contractlon durstion of less than 30 ms. The time interval between the 
movement onset and the beginning of ANT (Fig. 1) was normaJly higher than 
the EMG latency necessary for spindie influences, considered to be lass 
than 20 ms (Tarkka, 1986), indieating that this burst could be influenced by 
the muscular response to stretch, although together wlth other perlpheral 
influences and modulated by higher central commands. While the agonist 
activation is initially produced only by a central generator pattern, the 
antagonist burst is probably dependent on the interplay of a central program 
responsible for its beginning, with the participation of the peripheral 
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afferences on duration and amplitude modulation processes. Because it is 
impossible to identify clear1y the relative role of each factor on antagonist 
EMG patterns, the identificatlon of the antagonist regulation mechanisms is 
more complex. 
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Fig. 1 - Time interval between movement initiation and the onset of 
antagonist phasic burst; on subjects S6 and S7 it was not possible to 
determine this parameter. 
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Fig. 2 - Time interval between the onset of antagonist phasic burst and the 
end of the acceleration phase; on sUbjects S6 and S7 it was not possible to 
determine this parameter. 

The antagonist pulse aJways begen during the acceleration phase and, in 
most cases, developed its maximum intensity around the moment of elbow 
peak velocity (Fig. 2). Two subjects (S5, S10) that showed a modification on 
the antagonist pattern on condition V, were exceptions. So, the antagonist 
burst seems to represent more than an impulse braking, preventing fu" 
extension, and we must admit its participation in the control of the end of the 
acceleration phase. These findings could be related to the hypothesis of 
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Wierzbicka et aJ. (1986) who postulated that. in very fast movements, the 
main role of the antagonist activation is to control movement time. In the task 
we have studied, the total movement time is meaningless, as there were no 
time or spatial requirements to interrupt the elbow extension. The possibllity 
of a strong relation between the antagonist burst and the duration of the 
acceleration phase should be accepted- This idea is reinforced by the recent 
study of Jaric et aJ. (1995), that found that stronger antagonists, conditioned 
by a training program, could improve the performance of rapid elbow 
movements, since it facilitates the arrest of the movement in a short time. 
providing a longer time for acceleration and an increase in movement 
velocity. 

Antagonist modifications with velocity indicated an amplitude increase, 
measured by the integrated EMG (Fig. 3), with the increase of the throwing 
velocity, maintaining the temporal structure of antagonist activation among 
conditions (Fig. 4). 
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Fig. 3 - Integrated EMG of antagonist phasic burst (ANT) during the 
acceleration phase on the three conditions (P, C, V) of each sUbject. 
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Fig. 4 - Averaged antagonist EMG of aJl subjects in the conditions P, C and V. 

Two subjects (85, 810) presented an alternative way of braking the 
movement, when the accuracy constraints were absent (condition V). baseel 
on the increase of the joint stiffness through the co-contraction of agonist 
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and antagonist muscles (Fig. 5). This kind of braking mechanism was 
proposed by Ghez end Martin (1982) and has a reduced timing accuracy 
demand when compared with the active braking, produced by the antagonist 
phasic burst. 
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Fig. 5 - Averaged antagonist EMG of sUbject S10 on conditions P, C and V. 

CONCLUSION 
The timing of the antagonist phasic burst invite us (1) to associate it with 

the contro' of the end of the acceleration phase and (2) to accept that it could 
be influenced by the muscular response to stretch, although modulated by 
higher c$ltral commands. (3) The general tendency was to maintain the 
temporal structure of antagonist EMG among conditions end to increase its 
intensity with the increase of the throwing velocity. (4) Two sUbjects 
pre ented an alternative way of braking the movement when the accuracy 
constraints were absent. 
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INTRODUCTION 
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