A THREE-DIMENSIONAL KINEMATIC COMPARISON OF KICKING TECHNIQUES BETWEEN MALE AND FEMALE SOCCER PLAYERS

C.L. Tant

Iowa State University, Arnes, IA USA K.D. Browder Bowling Green State University, Bowling Green, OH USA J.D. Wilkerson Texas Woman's University, **Denton**, TX USA

Kicking is a basic skill used in extensively the game of soccer. **Isokawa** and Lees (1988) as well **as Luhtanen** (1988) have investigated the soccer instep **kick**, with planar **two-dimensional** cinematography to determine the sequencing of lower body segments. It was found that the proximal segments initiate the movement, but then decrease their velocity as **the** more distal adjacent segments increase in angular velocity. The extent to which the segments interact and the timing patterns between segments for the soccer instep **kick** is not well understood. Browder. Tant, and **Wilkerson** (1991) and Tant (1990) have investigated the segmental interactions of a three-dimensional(3D) soccer instep **kick** for both male and female subjects.

The purpose of this investigation was to compare the **kinematic** parameters and temporal structures found between male and female intercollegiate soccer players during the soccer instep **kick**.

METHODOLOGY

Eight male and 7 female Division I intercollegiate soccer players volunteered as subjects. Table 1 presents demographic **data** on the subjects of the study.

	Da		Table 1	• • • •		
	Ma		nic Profile of the Sub	Female		
Variable	M	SD	M	SD		
Age (yrs)	20.7	1.1	20.1	1.5		
Weight (kg)	72.2	3.0	61.1	2.8		
Height (cm)	176.4	2.9	151.8	3.3		

Detailed instrumentation and analysis methodology for this investigation has been reported previously (Browder, et al. 1991 & Tant, 1990).

RESULTS AND DISCUSSION

During a kicking motion the performer attempts to develop high **speed** with accuracy at the free end of an open-link system. Independent t-tests were used to determine if the male and female soccer **players** differed significantly during the soccer instep **kick** motion. The resultant ball velocities (**RBV**) of the low drive and maximum distance kicks in addition to the **total** movement time (**TTM**) of all 3 **kicks** were found to be significantly different (p < .05) between males and females (see Table 2).

	Low Drive (LD)		High Drive (HD)		Maximum Distance (MD)	
Variable	Μ	SD	М	SD	М	SD
MALE						
TTM (ms)	166.00	1.7	181.00	2.9	171.00	1.6
RBV (m/s)	21.17	2.3	14.14	4.0	21.15	4.4
FEMALE						
TTM	*152.00	2.3	*165.00	3.5	*158.00	2.7
RBV	*17.01	3.5	13.51	6.6	*16.17	2.8

Table 2Resultant Ball Velocities and Total Movement Time

(* \underline{p} < .05 between male and female subjects)

Males exhibit significantly greater **isokinetic** torques produced by the hip flexors and knee extensors when tested on **the** Cybex **II** dynamometer which may account for **the** increased **RBV**.

Maximum angular velocity (MAV) of the hip during **flexion/extension** was slightly greater in females in all 3 **kicks**. The hip reached **MAV** approximately at maximum shank back position (110 ms females and 120 ms males). As the shank reversed direction and moved forward the thigh decreased in velocity. A consistent pattern of increased velocities was exhibited during knee extension between both groups. Males had significantly greater velocities of the shank at ball contact (31.93 m/s, 35.51 m/s, 36.10 m/s) for the LD, HD, MD kicks, respectively, when compared to 21.84 m/s (LD), 23.12 m/s (HD), and 25.5 m/s (MD) for the females. Another **component** of increased RBV for males would be the increased velocity of the shank.

During all 3 kicks very little delay occurred between **the** forward motion of the pelvis (PEL) and thigh (THI) for both groups. As the subjects began forward motion of

the kicking leg the **PEL preceeded the THI** by approximately 2-3 ms, the lower leg **(LLG)** continued to move backward. Greater &lays, 81.9 ms (LD), 75.6 ms (HD), and 80.6 ms (MD) occurred between **the PEL** and LLG in **the males** than 76.5 ms (LD), 72.1 ms (HD), and 77.5 ms (MD) for the females. Slightly greater delays were also found between the THI and **LLG** for the males possibly due to increased range of motion of these segments during the kicking motion.

Both groups spent a greater percentage of time during Phase 4 (maximum shank back to ball contact) of the **total** movement time. However, males tended to spend more time during maximum thigh back whereas females spent more time during the support **foot** heel strike phase. Similar results were obtained for males and females during the relative timing of the segments (**see** Figure 1). Females tended to spend a greater percentage of time with **forward** movement of the pelvis, whereas males used the thigh **and** shank during a greater time, again a factor of increased range of motion.

A large percentage of shared positive contribution (SPC) between segments indicates simultaneity and a low percentage would be more sequential (Hudson, 1986). As shown in Figure 2, a significant difference of overlap was found between males and females of all 3 kicks between **THI** and LLG. The males exhibited less overlap using a more sequential pattern and again verifying the concept of increased velocities at the end of an open link.

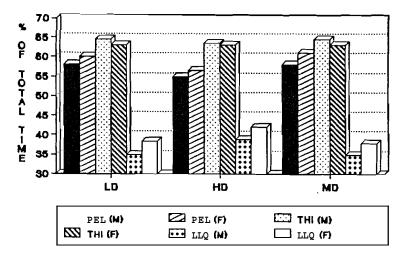


Figure 1. Relative timing of segments

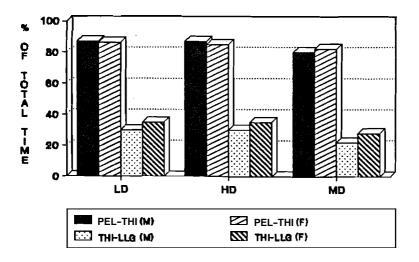


Figure 2. Shared positive contributions

CONCLUSIONS

Males had greater leg **strength** which produced increased RBV. In producing **these** velocities, males used greater ranges of motion at the hip and knee over longer time periods. Females exhibited greater pelvic rotation but tended to exhibit a greater inclination backwards of the trunk. **The** temporal structure seemed to indicate an invariant pattern between **kicks** and subjects.

For application to a **coaching/teaching** situation, the performer **should kick** the soccer ball with the same temporal pattern initiating the movement at the PEL, followed by the THI and **LLG**. Increased pelvic rotation with **MAV** at the knee should produce **the** greatest ball velocities. The contributions of the trunk and upper extremities should be investigated to determine their segmental contributions to the total kick. Increased leg strength. flexibility and a correct temporal structure should assist the performer in a successful soccer instep **kick**.

ACKNOWLEDGEMENT

* This study was funded by the Research Institute for Studies in Education at Iowa State **University** and the Department of **Kinesiology** at Texas Woman's University.

REFERENCES

- Browder. K.D., Tant, CL. & Wilkerson, J.D. (1991). A three-dimensional kinematic analysis af three kicking techniques in female soccer players. In CL. Tant, PB. Patterson, & SL. York (Eds.), Proceedingsof the Ninth International Symposium for Biomechanics in Sport. Ames, IA: ISU Press.
- Hudson, J.L. (1986). Coordination of segments in the vertical jump. *Medicine and Science in Sports and Exercise*, 18(2), 242-251.
- Isokawa, M., & Lees. A. (1988). A biomechanical analysis of the instep kick motion in soccer. In T. Reilly, A. Lees. K. Davids, & WJ. Murphy (Eds.), Science and Football. London, England: E. & F.N. Spon.
- Luhtanen, P. (1988). Kinematics and kinetics of maximal instepkicking in junior soccer players. In T. Reilly, A. Lees, K. Davids, & WJ. Murphy (Eds.), Science and Football. London. England: E. & F.N. Spon.
- Tant, C.L. (1990). Segmental interactions of a three-dimensional soccer instep kick motion. Unpublished doctoral dissertation. Texas Woman's University, Denton, TX.