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The purpose of the study was to demonstrate that the adaptative behavior of an elite 
female swimmer (Olympic silver medalist in the 400 m freestyle) can be modeled by means 
of the nonlinear mathematical method of a neural backpropagation network. Therefore, the 
training process of 107 successive weeks was carefully controlled and documented. For 
the data analysis a multilayer perceptron network was trained with the performance output 
data of 28 competitions within that time period and the training input data of the last four 
weeks prior to the respective competitions. After the iterative training procedure the neural 
network is able to model the resulting competitive performances on the basis of the training 
data from the two-week-taper phase and also from the earlier two-week-overload phase 
preceeding the respective competitions with high precision. 
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INTRODUCTION:  The thorough analysis of periodized training processes is one of the most 
important issues of training science with regard to two crucial elements: a) the understanding 
of the time course of adaptation (Rowbottom, Keast, & Morton, 1998), and b) the optimum 
monitoring of training. In contrast to linear mathematical concepts that have commonly been 
used for training analysis (Calvert, Banister, Savage, & Bach, 1976; Banister, & Calvert, 1980; 
Banister, 1982; Busso, Häkkinen, Pekarinen, Carasso, Lacour, Komi, & Kauhanen, 1991; 
Hohmann, 1992; Busso, Denis, Bonnefroy, Geyssant, & Lacour, 1997; Mujika, Busso, 
Geyssant, Chatard, Lacoste, & Barale, 1986; Fitz-Clarke, Morton, & Banister, 1991; Mujika, 
Busso, Lacoste, Barale, Geyssant, & Chatard, 1996; Hooper, & Mackinnon, 1998; Chatard, & 
Mujika, 1999), this current study was based on a synergetic concept of training and therefore 
the nonlinear method of a neural backpropagation network was used to model a training 
process. 
The use of the linear mathematical concept in training analysis has first roots in the idea that 
the ’system athlete’ can be precisely monitored like a ‘trivial machine’ (von Foerster, 1988). In 
that kind of cybernetic thinking, the system athlete functions in a way like a technical closed 
circuit, where a definite amount of training input leads to an equivalent raise in the performance 
output. On the basis of the cybernetic approach several studies focussed on the adaptation of 
swimmers to certain training regimens. In these studies the investigators used linear methods 
like differential equations or regression analysis to model the adaptative behavior as the result 
of different training parameters. 
Calvert, Banister, Savage, & Bach (1976) introduced an antagonistic fitness-fatigue-model to 
study the input-output relationship between the quantity of training and time of a criterion 
performance in a single-case study on a swimmer. The authors calculated arbitrary training 
units assigned to three categories of the intensity of the training input: warm-up intensity (I), 
low quality intensity (II) and high quality intensity (III). The performance output in 100 m time 
trials was modeled by two differential equations. The authors created a first transfer function to 
describe the decay of fitness as a negative training response starting immediately after the 
training impulse of a training session. The second transfer function described the antagonistic 
mechanism of the decay of fatigue, a positive result of the growing regeneration, that also 
starts immediately after the input of a training impulse. Finally, the investigators showed the 
model performance matched by linear regression analysis to actual performance of the 
swimmer. After the modeling had been improved by a replication of the study two years later 
for a training season of the same athlete, and by testing different time constants as model 



parameters, the authors could present a quite impressive figure that shows the results of the 
model fit. Unfortunately, the authors did not comment on the error of the model prediction. 
Mujika and coworkers (1996) also applied the antagonistic fitness-fatigue-model of Banister 
(1982) to the analysis and modeling of swim training effects. By means of a multiple regression 
analysis on the basis of the weighted training volumes from five categories of training data (I: 
speed inferior to 2mMol/l blood lactate; II: close to 4 mMol/l; III: close to 6 mMol/l; IV: high lactic 
swimming (10mMol/l); V: sprint swimming) they could predict the actual competitive 
performances during a competitive season with an accuracy that ranged from 45 to 85 percent 
within the 18 single national top ranking swimmers. 
Hooper, & Mackinnon (1999) investigated the optimal duration of taper in swimmers and found 
an optimal prediction in the performance improvement of 18 age group swimmers of 71 
percent. As predictors the authors used the percent change after one week of taper (that is 
from pre-taper to after one of two weeks of reduced training before the State Titles) with the 
following variables: the dimensions depression, anger, confusion and vigour of the 
questionnaire Profile Of Mood States (POMS), the swimming force in tethered swimming, and 
the reported log book fatigue and muscle soreness. 
The predictions that Hohmann (1992) calculated from the training input data of a water polo 
national team during the preparation for the Olympic Games 1988 by means of a multiple and 
time lagged Regression Analysis of Time Series (RATS) were comparably lower. The author 
included the predictors training volume of the last fifteen days prior to competition. The volume 
of swim training in the time course of the preceeding fifteen days showed a common variance 
with the observed Game Performance Index (GPI) that ranged from 5.8 to 54.8 percent for the 
10 investigated players. The volume of game training could only explain 25.0 to 28.1 percent of 
the variance in the GPI. 
From a synergetic point of view it is not very surprising that the reported predictions of 
competitive performances were not very good, because they are based on the linear 
mathematical concept (see (a) in figure 1), which seems to be inappropriate to model the black 
box of athletic adaptative behavior. 

 
 

 

 

 

 

 

 

 
Figure 1  -  The (a) Linear and (ab) Nonlinear concepts of training adaptation. 

[(a): As a linear model, it has to fulfil the following constraints: signal X1(t) at the input leads to y1(t) at the output; 

signal X2(t) at the input leads to y2(t) at the output; signal X(t)=X1(t)+X2(t) at the input leads to y(t)=y1(t)+y2(t) 

at the output.] 

There is much evidence for the idea that the individual effects resulting from the training 
process are to a certain extend self-organized. The most convincing argument is that the state 
of performance of the system ‘athlete’ does not only change through the influence of training 
input, but also by other environmental influences as well as through endogenious influences 
(O`Toole, 1998; Rowbottom, Keast, & Morton, 1998). If the state of performance of the athlete 
changes by itself and in a self-organized way, then his adaptability, in the sense of his 
capability to absorb and respond to training, also changes over the time. As a consequence of 
this specific aspect of training adaptation, the same training stimulus at a later moment in time 
leads to quite different adaptative responses in the same athlete (Fitz-Clarke, Morton, & 
Banister, 1991). Therefore, the training process and the resulting adaptation in the athlete can 
be better understood as a complex dynamic system and described more adequately by a 
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single case study. The training input data and performance output data have to be interpreted 
as two interacting time series and to be analyzed on the basis of nonlinear mathematical 
concepts. 
 
METHODS: The training process lasted a total 107 weeks from week 01/1996 to week 
03/1998. According to the system of Fry, Morton, & Keast (1991) it was devided into 8 
preparation macrocycles including the final competitions. The 8 macrocycles consisted of 6-14 
weeks (microcycles) of training preparation and 1-3 weeks of competitions. 
Data Collection. The data consisted of the competitive performances and the documented 
training loads in three zones of swim training intensity and two categories of dryland training. 
The three zones of training intensity were controlled by frequent lactate testing in the course of 
the training process. The documented categories of training were: compensation training 
below the aerobic threshold (Compensation: <2 mmol/l blood lactate); maintenance aerobic 
endurance training slightly above the aerobic threshold (End_I: 2-3 mmol/l blood lactate); 
developmental and overload aerobic endurance training at and slightly above the anaerobic 
threshold (End_II: 4-6 mmol/l blood lactate); anaerobic power training, speed training and 
competitions (End_III: 6-20 mmol/l blood lactate); dryland strength training (Strength); dryland 
general conditioning training (General Conditioning). The competitive performances in the 400 
m freestyle events were transformed according to the pointage system of the ’Ligue 
Europèene de Natation’ into LEN-points. Therefore, we used the LEN-point table 1997-2000, 
that reaches from 1 to 1200 points, and where the actual World Record (e.g. in the female 400 
m freestyle 4:03,85 min) serves as reference value for 1000 points. 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 2  -  The structure of the multilayer backpropagation net (‘multilayer perceptron’, 

DataEngine Inc., Aachen, Germany) used to model the interrelation between 
the training input data and the performance output data. 

 
Data Analysis. In the present study a ’neural backpropagation network’ (MULTILAYER 
PERCEPTRON, DataEngine Inc., Aachen, Germany) with three layers was used. Two 
analysis were conducted: one to determine the influence of the two week taper phase prior to 
the 28 competitions. The taper has the function to allow the athlete to recover from the high 
training loads before and to peak his performance. The second analysis should determine the 
influence of the overload training phase, that includes the weeks four and three prior to the 
single 28 competitions. This ‘crash’ phase normally contains very intense and exhaustive 
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training, and has the function to create a state of slight overreaching (Kreider, Fry, & O`Toole, 
1998) in the athlete. That state of transient fatigue allows the athlete to reach an accumulated 
and thus optimal supercompensation after the later taper. 
For both analysis a neural network with 10 input neurons was created (figure 2). Each neuron 
represented the weekly training volumes in one of the five zones of training intensity in one of 
the two weeks of the investigated training phase. Two hidden neurons served to represent the 
black box of the system ‘athlete’ and one output neuron to represent the competitive 
performance. In the first step, the multilayer network was trained with the training input data 
and the performance output data of 25 training and competition phases (three less than at 
hand) to learn the interrelation between the training input and the performance output. The 
training phase aimed at the weighting of all 13 neurons on the three layers and consisted of 
5,000 iterative calculations of the neuron weights. Figure 3 shows the iterative training process 
up to the step 4732, where the mean training error was smallest. 
 

 
Figure 3  -  Minimization of the training error by an iterative training process of the 

neural network. 
 
In the second step, the trained network was tested with the competitions 26 and 27. On the 
basis of the testing the network parameters that allow the best fit were chosen. In the third and 
final step the optimized network was used to model the competitive performances of the 27 
competitions and also of the last competition (#28). For the last modeling procedure, the neural 
network was provided with only the training input data. This forced the neural network to 
estimate the resulting competitive output data only on the basis of the formerly learned weights 
of the connected neurons on the three layers. 
 
RESULTS AND DISCUSSION:  The results of the modeling procedure demonstrate that after 
the thorough training procedure the backpropagation network is able to model the competitive 
performance from the two week taper phase (figure 4) by an average error of 16.8 LEN-points, 
that is 2.0 percent of the mean competitive performance of 820.9 LEN-points. Compared to the 
true competition times in the 400-m-freestyle (females) on the level of 821 LEN-points, that 



average error is equivalent to a deviation of 4:20.42 min plus 1,82 s or minus 1.5 s. The 
maximum error of the modeling is 39.7 LEN-points resp. 4.8 percent.  

 
Figure 4  - Comparison of the real competitive performances and the performances 

modeled by a neural backpropagation network on the basis of the training 
data from the two-weeks taper phase. 

The second modeling of the competitive performance output as adaptation effect of the high 
load training phase (figure 5) is less precise than the modeling of the effects of the taper phase. 
The average error of the modeling on the basis of the 10 different training volumes of the fourth 
and third week before the competition is 25.6 LEN-points. This is 3.1 percent of the mean 
competitive performance of 820.9 LEN-points. Such a difference is equivalent to plus 2.81 s or 
minus 2.69 s when swimming 4:20,42 min. The maximum error of the modeling is 96.8 
LEN-points resp. 11.8 percent. 

 
Figure 5 - Comparison of the real competitive performances and the performances 

modeled by a neural backpropagation network on the basis of the training 
data from the two-weeks high load training phase before taper 
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The precision of the neural network prediction is much higher compared to the prediction 
achieved by a conventional regression analysis (figure 6). To proof the advantage of the 
nonlinear approach to training analysis, a multiple regression analysis with ten predictors was 
calculated to quantify the effect of the taper phase. Therefore, the ten independent variables 
consisted of the training data in each of the five categories of training loads, that were recorded 
in the taper phase, that is the last week (week-1) immediately before the competition, and for 
the second last week (week-2) before the competition. So, the linear analysis was based on 
the same training input data as the nonlinear approach, when modeling the competitive 
performances as a result of the taper phase. 
 

 
Figure 6 - Comparison of the real competitive performances and the performances 

modeled by a multiple regression analysis on the basis of the training data 
from the two-weeks taper phase 

 
The results of the multiple regression analysis show an average error of the model prediction of 
the competitive performances by the training data of the taper phase of 52,2+32,4 LEN-points, 
that is 6.4 percent. Compared to the model prediction by the neural network method this is 
more than thrice as much. Related to the average of the real competition times in the 400-m 
freestyle of 4:20,42 min such an error leads to differences of plus 5.74 s or minus 5.28 s. The 
maximum error of the modeling is 131,3 LEN-points resp. 16,0 percent. 
 
CONCLUSION:  The results of the study demonstrate that neural backpropagation nets such 
as the used ‘multilayer perceptron’ are excellent tools to model and even prognose competitive 
performances on the basis of training data. 
1. One of the main advantages of the neural network method is that the original training data 

recorded by the coach do not have to be transformed into an arbitrary ‘training impulse’ 
(Banister, 1982) or any other more or less artificial training load parameter. The application 
of the neural network method is even possible when the data basis resulting from the 
training record of the coach is inappropriate for advanced regression analysis. Real 
training data, although relevant for the practical field, very often is too small or not 
adequately scaled to allow scientific progress with the methods commonly used up to now. 

Multiple  regression analysis with five training loads of the two weeks during taper (t-1 und t-2) as 

predictors
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2. Another advantage of the neural network method is that it can model linear and also 
nonlinear transformations of the training stimuli into performance, that take place in a 
single athlete. Nonlinear transformations are to be expected, when the system athlete 
changes itself within the investigated time period under the influence of training. The 
research conducted by Banister and the different groups of coworkers provides much 
evidence that, indeed, the adaptability of an athlete changes in the course of the training 
process. Banister (1982) stated in his study on swimmers that because of the changes in 
the ability both to absorb and respond to training stimulus, the modeling and the prediction 
of competitive performances by means of transfer functions (least square algorithms) is 
only then stable, when the training process does not last longer than 60 to 90 days. After 
that time period a new individual model fit has to be found. Therefore, the model 
parameters (e.g. decay time constants for fitness and fatigue, weighting of training intensity 
zones) have to be manipulated intuitively or by trial and error. Later investigations in 
swimmers by Fitz-Clarke, Morton, & Banister (1991) confirmed these results. Training 
impulses in a later stage of the same training process led to different adaptations in the 
variables fatigue and fitness. 

3. Furthermore, the method is not only able to ‘learn’ the individual adaptative behavior of the 
athlete. After the learning procedure the neural network is also able to calculate a 
simulation of the prospective performance responses of the athlete under the influence of a 
slightly changed structure of the training input. So, after some training analysis the trained 
neural network allows the coach to simulate the effects of certain modifications of the 
training program on the competitive performance of the athlete. This makes the planning 
and monitoring of a training process more effective. 

4. A fourth advantage of the neural network method is very important in respect to training 
theory. The higher quality of the results delivered by the nonlinear modeling of the training 
responses gives support to a synergetic approach to the analysis of training adaptation. 
From a synergetic point of view, the athlete can be described as a complex dynamic 
system. One idea is that the system athlete enters a certain stage of stability of 
performance (attractor) under the influence of the training load (control parameter). The 
neural network method can help to identify the optimal range of training load, that is 
necessary to help the system athlete to self-organize the transient state of optimal 
performance. 
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