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INTRODUCTION

The shoiilder is one of the most intriguing structures of the human body. Its most salient
feature is its large range of motion. The mgor part of this motion originates in the
glenohumeral joint, which joinsthe scapulaand the humerus.
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Fig.1 Human Shoulder Girdle

About one third of the mobility of the
shoulder as a whole, however, is due to the
mobility of the shoulder girdle, the
mechanism of clavicle and scapula (Fig.1).
The clavicle is connected to the front of the
thorax in the sternoclavicular joint and
through the costoclavicular ligament. and to
the scapula at the acromioclavicular joint
and through the trapezoid and conoid
ligaments. 1n normal situations the medial
rim of the scapula sides over the back of
the thorax; thisis called the scapulothoracic
gliding plane and can be considered as a
pseudojoint.

The mechanism is actuated by muscles,
which can be anatomically subdivided into
three classes. thoracoscapular muscles,
thoracohumeral muscles and
scapulohumeral muscles. In contrast to the
lower extremity, not many biomechanical
models of the shoulder have been
formulated both for kinematic and dynamic
studies. This is mainly due to the fact that
shoulder movements are essentialy three-
dimensional, while the lower limb can in
fair approximation be regarded as a planar
mechanism (however see Thunisse, 1993).

METHODS& DISCUSSIONS

The motion equations of the system are
comparable to the Lagrangian approach;
there are as many dynamical equation as
generalized coordinates (either position
coordinates or deformation modes). In the
kinematical step the position coordinates of
the next position are computed from the
actual position coordinates and the changes
in the generalized coordinates, using a
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where 8% 1 8GE™,e™) and @%%/ (™ ,é"™ )%are the first and second
derivatives of the position coordinates to the generalized coordinates (first and second
order geometric transfer function) respectively. These matrices are not instantaneously
available, but can be computed according to the following method. The deformation
vectore e in terms of the position coordinates x is known in analytical form from the
deformation descriptions of the elements of which the total mechanism consists:

e = D(x) (A02)

Thederivative to the gengralized coordinates can be formulated as follows:
The matrix & / &x isavailable in analytical form. By partitioning the vectors e and

' -)_c(o) - vector of fixed support coordinates;

(e)= vector of dependent nodal coordinates,

x

X = vector of global generalized coordinates;

@@= vector of fixed prescribed deformation mode coordinates;
€ - vector of relative generalized coordinates,

& - vector of dependent deformation mode coordinates.
the matrices & / (£ ,&™ Yand &% / S(E™ ,&™ )can be simplified:
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In this expresions the only unknowns are the submatrices & / (¥ ,&™) and

& | (x™, &™), Because the number of dependent nodal coordinates is equal to

the sum of numbersof fixed prescribed deformation mode coordinates and the number
of relative generalized coordinates (the number of degrees of freedom), the

& 1 &, &™ 1 XV is square, and if the mechanism'is not in a singular
position, invertible. Therefore the matrices & /(¥ ,&™) and subsequently
& 1 (™, ("')) can be calculated:
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In a similar manner the second derivative of the posmon coordinates to the
generalized coordinates canlbe derived, resultingin:
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After an approximation of the new
position of the mechanism has been
computed, a Newton-Raphson iteration
procedure is peformed to sdisfy the
continuity equationinthe new position.

Despite its advanteges, the Lagrange
method, many times could lead to not
suitable mathematical models  from
numeric point of view. For thisreason, on
the presented modd, the Denavit-
Hartenberg matrix  formaisn  was
implemented, where the transformation
matrix from a reference system to the next
referencesystem hasthe expresion:
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1 Only the most important were completely mentioned. and the others were

previously specifiedin the text
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