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INTRODUCIION 
The shodlder is one of the mFt intriguing structures of the human body. Its most salient 

feature is its large range of motion. The major part of this motion originates in the 
glenohumeral joint, which joins the scapula and the humerus. 

Fig. 1 Human Shoulder Girdle 
About one third of the mobility of the 

shoulder as a whole, however, is due to the 
mobility of the shoulder girdle, the 
mechanism of clavicle and scapula (Fig. 1). 
The clavicle is connected to the front of the 
thorax in the sternoclavicular joint and 
through the costoclavicular ligament. and to 
the scapula at the acromioclavicular joint 
and through the trapezoid and conoid 
ligaments. 16 normal situations the medial 
rim of the scapula slides over the back of 
the thorax; this is called the scapulothoracic 
gliding plane and can be considered as a 
pseudojoint. 

The mechanism is actuated by muscles, 
which can be anatomically subdivided into 
three classes: thoracoscapular muscles, 
thoracohumeral muscles and 
scapulohumeral muscles. In contrast to the 
lower extremity, not many biomechanical - O s s a  carpi 
models of the shoulder have been 

j k s a  maetacarp i  formulated both for kinematic and dynamic 
= - O S S ~  digi tomar studies. This is mainly due to the fact that 

shoulder movements are essentially three- 
dimensional, while the lower limb can in 
fair approximation be regarded as a planar 
mechanism (however see Thunisse, 1993). 

METHODS & DlSCUSSIONS 
The motion equations of the system are 

comparable to the Lagrangian apdroach; 
there are as many dynamical equation as 
generalized coordinates (either position 
coordinates or deformation modes). In the 
kinematical step the position coordinates of 
the next position are computed from the 
actual position coordinates and the changes 
in the generalized coordinates, using a 

second order Taylor expansion: 
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where 8x / ~ ( x ( ~ ) , T ( " , ) )  and 8 ' x  / 8(x(",) ,e(",))'are the first and second 
derivatives of the position coordinates to the generalized coordinates (first and second 
order geometric transfer function) respectively. These matrices are not iqstantaneously 
available, but can be computed according to the following method. The deformation 
vectore e in terms of the position coordinates x is known in analytical form from the 
deformation descriptions of the elements of which the total mechanism consists: - 

e = D(;) (A02) 

The derivative to the generalized coordinates can be formulated as follows: - 
i% 6 ax -- - -. 
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The matrix aF / i?f is available in analytical form. By partitioning the vectors e and 
X : 

X(0)  - - vector of fixed support coordinates; 
p-' - vector of dependent nodal coordinates; 

x(",)= vector of global generalized coordinates; 
i?(O)= vector of fixed prescribed deformation mode coordinates; 
&c) - - vector of relative generalized coordinates; 
~ ( m )  - - vector of dependent deformation mode coordinates. 
the matrices & / (x(",),e(",))and 8x / 8(xir'(",) ,e(",))can be simplified: 



In this expresions the only unknowns are the submatrices z(') / (x:.("), 8'")) and 

8(c) / (x("),e(")). Because the number of dependent nodal coordinates is equal to 
the sum of numbers of fixed prescribed deformation mode coordinates and the number 
of relative generalized coordinates (the number of degrees of freedom), the 

z ( O )  / &(C),dF(m) / &(c ) ) r  is square, and if the mechanism' is not in a singular 

position, invertible. Therefore the matrices 

Z(c' I (Y'"' , 8'"' j can be calculated: 

and subsequently 

In a similar manner the second derivative of the position coordinates to the 
generalized coordinates can be derived, resulting in: 
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After an approximation of the new 
position of the mechanism has been 
computed, a Newton-Raphson iteration 
procedure is performed to satisfy the 
continuity equation in the new position. 

Despite its advantages, the Lagrange 
method, many times could lead to not 
suitable mathematical models from 
numeric point of view. For this reason, on 
the presented model, the Denavit- 
Hartenberg matrix formalism was 
implemented, where the transformation 
matrix from a reference system to the next 
reference system has the expresion: 

An = 
COSqi -sinqiCOSa i s inq is ina  i 

(1  
a C%22i ~echanical model for the upper limb 

sin a i COS a i d i 
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