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INTRODUCTION 

The computer simulation and the associated problem of the optimiza­
tion of sports motions is a comparatively new field of biomechanical 
research. Until recently, the majority of investigations were concerned 
with the analysis of specific attributes of a certain discipline, usually 
neglecting all other facets of the investigated phenomenon. This view has 
now changed in favour of a more holistic one. 

However, very little experience has been gained up to now in the field 
of computer simulation of sports motions. One of the reasons for this lack 
is certainly to be found in the high degree of mathematical sophistication 
required to deal with the intricacies associated with the computer 
simulation of the human neuromusculoskelctal system. Only a team of 
mathematicians, numerical analysts and computer scientists is in a 
position to develop the necessary algorithms and computer programs. 

In this paper we shall present an overview of some of the major 
problems relating to the computer simulation of planar (2-D) motions 
and give an example of a long jump simulation. We shall deal mainly with 
the skeletal subsystem of the total neuromusculoskeletal system since a 
discussion of the complexities of the muscular and neural subsystem is 
beyond the scopc of this presentation. 
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MODEL OF THE SKELETAL SUBSYSTEM 

The skeletal, or executor, subsystem consists of the assemblage of limb 
segments which are acted upon by internal active and passive forces 
(moments) and by external driving and reaction forces (moments). 

An anthropomorphic (human-like) physico-geometrical model of the 
skeletal subsystem will be termed a hominoid. Such a model of the 
segmented human body is essential for the simulation of gross body 
dynamics. The morphology of the hominoid defines the number f of 
mechanical degrees of freedom of the (unconstrained) model, as well as 
the shapes and inertial properties of the individual segment models. 

Hominoids of widely varying complexity have been reported in the 
literature, beginning with the impressive work of O. Fischer (1906). Some 
time ago, several authors (Hemani et al., 1973; Hemani and Golliday, 
1977; Vukobratovic and Juricic, 1969) have used three- and four- link 
body models that could conceivably still be classified as anthropomor­
phic. These models consist of a three- or four- segment assemblage of 
uniform bodies and were used for investigations into the stability of 
bipedal gait. It is, however, highly questionable whether models with two 
stiff legs, without feet or knee joints, can yield results that are applicable 
to actual human gait. 

The inadequacy of these oversimplified models was soon recognized 
and hominoids comprising from 11 (Morecki et aI., 1975) to 17 segments 
(Hatze, 1977, 1980a) were proposed for simulating and analyzing more 
complex motions of the human neuromusculoskeletal system. Surprisin­
gly, however, the shoulder segments, which clearly constitute dynamical­
ly separate entities, are almost always considered part of the upper trunk 
except in the model of Hatze (1977), where they are included as separate 
segments. The latter 17-segment hominoid is displayed in Figure 1. 
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Fig. 1 Morphological appearance of the 17-scgment hominoid. The local 
segment coordinate systems are also shown. 
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Fig. 2 Seventeen-segment human body model for the simulation'of 
planar motions. The 21 configurational coordinates ql, .... , q21 
are also shown. 
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The number f of mechanical degrees of freedom of the body models 
discussed varies from five (three-segment model in planar motion) to 44 
(for three-dimensional motions of the hominoid depicted in Fig. 1). If 
used for the simulation of planar motions, the latter 17-segment 
hominoid has only 21 degrees of freedom. The planar model and its 21 
configurational coordinates q J, ... , q21 are shown in Figure 2. 



This model has been found to be adequate for the analysis and 
simulation of a large variety of planar sports motions. In particular, it has 
been used successfully in the simulation studies of the long jump to be 
presented here. However, in order to individualize the general model of 
the skeletal subsystem, the values of the segmental parameters of a given 
athlete have to be substituted into it. Methods for the practical 
determination of these parameter values will now be discussed. 

PRACTICAL DETERMINATION OF SEGMENT PARAMETER 
VALUES FOR A GIVEN ATHLETE 

The parameters characterizing the biomechanical properties of the 
hominoid segments are given by the set 

{Vi' M j, lxi, Iyj , Izj , Xi, Y j , Zj, x'i, yi, zi, 8 j, i=l, ... , 17}, (1) 

where the symbols denote, respectively, the segmental volume, mass, the 
three principal moments of inertia with respect to principal axes passing 
through the mass centroid, the three components of the position vector 
locating the mass centroid relative to the local (segment-fixed) Cartesian 
coordinate system, the three components of the vector locating the origin 
of the i-th segment relative to the coordinate system of the proximal 
segment, and the anglc(s) of inclination of the principal axes relative to 
the original segment axes. 

While parameters describing segmental lenghts (xi, Yi, zi) may be 
determined by direct measurement on the respective segments of the 
subject, the experimental determination of the other parameter values 
creates problems. Dempster (1955), Drillis and Contini (1966), and 
Clauser et al. (1969) used the immersion method for the determination of 
segmental volumina, while the computation of the segmental masses 
from the measured volumina is possible by employing the average density 
values reported by Dempster (1955) and Harless (1860). Indirect 
experimental determinations of segmental masses and (or) moments of 
inertia can be performed by means of the gamma-ray method (Casper, 
1971), the reaction change method (Williams and Lissner. 1962), the 
pendulum method (Hill, 1940), the quick-release method (Fenn, 1938), 
and the oscillation method (Hatze, 1975). However, experience has 
shown that all of these experimental methods either yield inaccurate 
results, or are cumbersome to use. 
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Because of these shortcomings, methods were devised which use 
certain anthropometric measurements as input data to segment models 
that permit an approximate computation of the segmental parameter 
values. We shall call these techniques anthropometric - computative 
methods. In the Hanavan model (Hanavan, 1964), simple geometrical 
bodies (ellipsoids, right elliptical cylinders, etc.) are used to approximate 
the shapes of the actual body segments. Miller and Morrison (1975) and 
Jensen (1978), have commented on some of the inaccuracies associated 
with the identification of anthropomorphic segments with simple geome­
trical bodies. In 1980, a new anthropometric - computative method and 
computer algorithm was introduced by the author (Hatze, 1980a) in 
which the individual segments are decomposed into finite elemental units 
of known geometrical structure. By thc use of triple integration over 
element boundaries and subsequent summation of integrals, the volume, 
mass, the coordinates of the mass centroid, the principal moments of 
inertia, and the orientation of the principal axes of a given segment may 
be obtained. Each individual elemental unit is assigned its own density, 
and in this way the varying mass distributions across and along segments 
are taken into account. Some of the integrals involved cannot be solved 
analytically, and a special subroutine performing the numerical quadratu­
re is supplied in the computer program ANSEPA for this purpose. The 
morphologies of the individual scgment models can be seen from Fig. 1. 

In creating this finite elemental unit model and the associated 
computer program ANSEPA, the following requirements had to be 
satisfied: 

1)	 The model should permit a differentiation between male and female 
subjects (exomorphic differences mass distributions, density fun­
ctions, etc.); 

2) the actual shape fluctuations of all the individual segments should be 
fully taken into account; 

3) varying densities, both across the cross-section of a segment (where 
necessary) and along its longitudinal axis should be accounted for; 

4) the densities of some segmental elements (buttocks, lateral sections of 
upper thighs, etc.) should be automatically adjustable by the program 
according to the value of a special subcutaneous-fat indicator; 

5) asymmetries of segments (abdomino - thoracic segment, abdomino ­
pelvic segment, hands, feet, etc.) should be fully taken into account 
and the necessary principal axes transformations performed by the 
program; 
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6) all changes in body morphology due to age, obesity, pregnancy etc. 
should be accounted for; 

7) the overall accuracy for all parameters and segments should be better 
than 3%; 

R) all segmental parameter values for a given subject should be 
computable from a set of anthropometric measurements taken directly 
from the subject thus obviating the introduction of errors to which 
photo-image techniques are subjected. 

The final model and associated algorithm fulfilled the above require­
ments so that the computer program ANSEPA was considered adequate 

for the determination of the segmental parameter values of the 21-year 
old male subject whose long jump motion was to be simulated. 

SIMULATION MODEL 

The dynamical model used for the simulation of planar motions is 
described in detail by Hatze (1977, 1980b, 1981a, 19R1b) and Hatze and 

Venter (19Rl). In the present paper, a simplified version of the general 
model will be discussed. The simplification consists of the exclusion of the 
excitation and contraction dynamics of the model muscles, i.e. the 

control inputs to the simulation model are not the neural controls 
stimulation rate and rate of motor unit recruitment of the respective 

muscles, but directly the time functions of the muscle moments 

generating the motion. In this case, the dynamics of the executor 
(skeletal) subsystem is given by the nonautonomous, nonlinear, ordinary 
first-order differential system 

x = A -1(x)[B(x)+QM(t)+QL(X)+QE(X,t)+QC(x)], x(O)=xo, (2) 

where 

x - (ql' q2' ... , q2b qJ, q2, ... , q21)T (3) 

is the 2f-dimensional (in the present model 42-dimensional) state vector 
consisting of the 21 configurational coordinates (see Fig. 2) and their first 
derivatives; A(x) denotes the 2fx2f inertia matrix containing also the 

segment parameter values; B(x) is a 2f-vector of gravitational, centrifugal 
and other inertial forces; and QM(t), QL(.), QE(.), and QC(.) denote 

respectively the vectors of the muscle moments, joint range limitation 
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torques, external non-contact moments or forces, and the moments 
(forces) resulting from external constraints, such as ground reactions on 
the feet. The constraint moments QC(x) are computed automatically by 
the simulation program upon activation of the constraints. The symbol Xo 
in (2) denotes the initial state vector. 

The equations (2) and all other algorithms necessary for their 
integration are coded in FORTRAN77 and combined in the computer 
program ANDYMO (Hatze, 1981a). 

Of particular interest for the simulation on the computer of the 
differential system (2) are the inputs of muscular moments QM(t). Given 
the segmental parameter set (1) of a specific athlete, an initial state Xl), 
moment functions QL(X) and QE(t), and muscular control moment inputs 
QM(t), the system (2) may be integrated and the resulting motion 

(4) 

of the hominoid may be displayed on an electronic screen in the form of 
successive configurations of a human figure. This procedure will now be 
demonstrated on the example of a long jump simulation. 

COMPUTER SIMULATION OF THE LONG JUMP 

In order to simulate on the computer a planar long jump motion of a 
specific athlete, the 17-segment hominoid shown in Figures 1 and 2 was 
chosen. To obtain an initial estimate of the muscular control moment 
function vector QM(t) for the take-off phase, the following technique, 
termed ANSYN (ANalysis - SYNthesis) approach, was devised. 

A 21-year old made athlete, 187 cm tall and having a mass of 85.30 kg, 
performed a series of long jumps (left leg jumper). The take-odf phase 
was filmed with a Photosonics Biomechanics 500 high speed camera at 
500 fps. The ground reaction forces were measured by a Kistler force 
plate, synchronized with the film, and recorded on tape. 

A complete 2-D motion analysis was then performed using the 
recorded data. The computer program MORECO was used for the high 
prccision object space reconstruction from the manually digitized film 
images of the body markers fixed to the subject. 

First. the program automatically smoothed the time sequences of the 
digitized point coordinates and removed outliers. Next, it performed 
automatic calibration by correcting for all linear and nonlinear distortions 
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in the whole optical train, using a modified DLT-approach with a spatial 
reconstruction accuracy of better 0.7 mm. Finally, the program perfor­
med the object space reconstruction of the whole take-off motion yielding 
both, the time functions of the spatial marker coordinates and of the 
configurational coordinates qj(t k), i=1, ... 21. 

The latter coordinate sequences were fed into the computer program 
HOM2D2, together with the ground reaction force histories and the 
athlete's segmental parameters as determined with the aid of program 
ANSEPA. Program HOM2D2 then automatically performed the optimal 
smoothing of the data sequences qj(t k), i=1, ... ,21, k=O,l, ... ,N and the 
computation of their optimally filtered first and second time derivatives, 
and computed all kinematic and kinetic characteristics of the observed 
motion (the histories of all shear and compressive joint loads, the 
histories of the passive and muscle moments, the histories of the 
segmental and the total linear and angular momenta, encrgies, and 
powers, and the histories of the position and velocity of the body center 
of mass). 

The output file of the analysis program HOM2D2 therefore contained 
the muscle moment functions QM(t) required as input for the simulation 
program ANTOR which program constitutcs a simplified version of the 
general 2-D simulation program ANDYMO. Further inputs to program 
ANTOR were the segmental parameter values as computed by program 
ANSEPA, and the smoothed initial state vector 

x(O) = [ql(0)"",Q21(0),Ql(0), ... ,Q21(0)] 

taken from the respective file of program HOM2D2. All input and output 
files of the various programs communicate directly thereby facilitating 
easy data handling. 

For the simulation of the long jump, the vector QE(X,t) of extcrnal 
non-contact moments (forces) appearing in (2) is a zero vector, while the 
vector QC(x) of external constraint moments is automatically computed 
by program ANTOR upon activation of onc or more constrai!1ts. The 
respective algorithm has been described in Hatze and Venter (1981). 

The last entry appearing in (2) and not yet discussed is the vector QL(X) 
of joint range limitation moments. These moments provide a means of 
quantifying the range of joint mobility of a given individual. For hingc 
joints (planar motion) the following model proved successful in practical 
applications: 

QL(8,8) 
Cl 

(8-8,)"' 

Co 
---­
(8u -8t' 

(bo+b I8+b28 2)8, 868<8u (5) 
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where Cb C2, ni, n2, 8 1, 8 u ' bo, b j and b2 denote constants and 8 is the 
joint angle. The values of Cb C2, n\ and n2 determine the steepness of the 
function slopes near the boundaries 8 1 (lower boundary) and 8 u (upper 
boundary), while the values of bo, b[ and b: are the model constants of 
the factor determining the type of damping present. If, for instance, b l = 
b2 = 0, the damping is a purely viscous onc. 

An inspection of function (5) reveals that near 8 1 the term containing 
the factor c\ dominates and produces a rapidly increasing positive 
moment as 8 approaches 8[ from above. A similar situation prevails at 
the upper boundary as 8 approaches 8 u ' except that the moment 
produced is negative. Thus, the moments computed are always such as to 
counteract, in a highly nonlinear fashion, an overstepping of the joint 
range boundaries, while within the working range of the joint the 
moments are negligibly small. As an example, Figure 3 displays the joint 
range limitation torques for the left knee joint of a specific subject. The 
model constants appearing in (5) were determined experimentally by 
means of specific methods described in Hatze (19R Ib). 

KNEE JOINl RANGE LIMllA1ION MOMENl 

150.0 

100.0 

50.0 

.0 

-50.0 

-100.0 
I I I ------. 

-2.4 -1.8 -1. 2 -.6 .0 
KNEE ANGLE (RAD) 

Fig. 3 Joint range limitation moment QL for the left knee of a given male 
subject. The values of the constants arc c\=1.0, C2=1.0, n[=l, 
n2=1, 8[=-2.20 rad, 8 u =0.OOOlI rad, bo=3.01, b\=O.O, b2=O.O. 
The function displayed is for 8=0. 
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Although functions of the type (5) provide an efficient means of 
limiting the joint ranges in simulation models of the human neuromuscu­
loskeletal system, they are not without problems. Owing to the steep 
increase of the functions near the upper and lower boundaries, and due to 
the presence of the damping term, the functions OL(.) introduce 
inherently stiff components into the model of the executor subsystem. 
This may lead to excessively small integration steps and hence inefficient 
simulation if a joint is forced into a limiting position by large inertial and 
(or) muscular forces. Investigations to solve this problem are at present 
under way. 

Having determined all functions appearing in (2), the synthesis 
(simulation) part of the ANSYN approach may now be carried out. 
However, the analysis part yielded the control moments OM(t) only for 
the take-off phase of thc long jump, so that for the flight and landing 
phase these functions had to be estimated by trial and error. This was 
done in a rather laborious procedure taking about 110 hours. In this 
process, functions O~(t), O~(t), ... , O~I(t) were estimated for tE[t"t2J, 
the simulation was then performed on a digital mainframe computer, the 
result displayed on an electronic screen in the form of successive 
configurations of a human figure, and corrective actions were then taken 
on the grounds of this visual information. In this way, the complete long 
jump was simulated. A super-8 mm film was made by recording, frame by 
frame, the video displays of the successive long jump configurations. 
While the simulation outputs were available at time intervals of 0.002 s 
corresponding to 500 frames per second, the frame rates for the 
production of the movie were chosen to be 25 (normal speed), 125 
(moderate slow motion), and 250 (slow motion). The film permits a 
detailed visual analysis of the simulated motion. 

Simulation (synthesis) of motions is, of course, not a purpose in itself. 
Rather, it serves to convey insight into the dynamic behaviour of the 
simulated system, allowing the application of sensitivity analysis techni­
ques, the determination of dependencies on parameter inaccuracies, etc. 
In the present example of the long jump simulation, it could be observed 
that the performance criterion, i.e., the distance jumped exhibited a high 
sensitivity to 
(1)	 changes in the initial state variables q]()(O) and Q17(O) which denote 

respectively the initial hip and knee joint angle of the (left) stance 
leg, and . 

(2)	 to variations in the timing of the functions O~6(t), O~7 and O~H(t), 

i.e.	 to variations in the coordination of muscular actions across the 
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hip, knee and ankle joint of the stance leg during the take-off phase. 
More detailed investigations are at present being conducted that will 

permit quantitative statements as to the optimal initial states and control 
patterns during the take-off (details in Hatze, 1981a), flight and landing 
phases of the long jump. 
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