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This study used the self organising map (SOM) as a processing step in reducing the 
complexity of human movement dynamics obtained from execution of a rowing stroke. 
The SOM is an artificial neural network (ANN), adapted in an unsupervised manner using 
a self organising learning process. Three-dimensional joint angles, produced by the 
rowers, were projected onto a 2 dimensional topological neural map, thereby 
identifying rowing movement patterns. Unsupervised clustering allowed the time series 
rowing strokes to be positioned on the map in relation to each other and this enabled 
movement patterns to be compared. The larger kinematic variation of the novice 
rowers was observed. The weight vector associated with each SOM cluster illustrated 
underlying task related changes in the rowing stroke patterns between elite and novice.  
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INTRODUCTION: 
The motor skill of rowing may be considered to be cyclical in nature, and was chosen for this 
study due to the abundance of repeated multi dimensional data produced over a standard 
performance (2000m). The optimisation of the rowing stroke is something that athletes, 
coaches and sport scientists strive for. However, current researchers in the field of rowing 
stroke optimisation tend to seek accurate differences rather than absolute results (Atkinson, 
2002); this may be due to the complexity of modelling the rowing stroke.  Currently, there is 
insufficient evidence to support the claim that the use of movement pattern analysis 
improves rowing performance. The large quantity of information contained in a kinematic 
analysis can lead to an inconsistent interpretation. Qualitatively, an experienced rowing 
coach forms a hypothesis early on and knows exactly which pieces of information are 
necessary for analysis. This can speed up decision making, but at the same time carries 
the risk of over interpreting some possibly irrelevant details and neglecting some possibly 
relevant components. There is a clear need for a method which enables large quantities of 
data to be analysed and interpreted objectively. If events are not analysed in their particular 
process, connections, and contexts, important aspects of the actions (e.g. time-dependent, 
logical, and structural relations) remain unrecognized and understanding the movement 
correctly remains unfulfilled. It is a biomechanical research goal to have methods which 
allow one to objectively analyze (non-repetitive) movement patterns. The dynamics, range 
and velocity of the entire movement have to be taken into account appropriately, preventing 
simple decomposition into single limb position and joint angle patterns.  
Artificial neural networks (ANNs), under the term “Artificial Intelligence” have been found to 
be the most prevalent non-traditional methods used for gait data analysis in recent years 
(Chau, 2001). Previous research carried out at the University of Limerick has assessed the 
use of supervised ANNs in the assessment of rowing. Another form of ANN is the self-
organising map (SOM) (Kohonen, 2001) which employs unsupervised learning; the most 
prominent type of which is that of Kohonen Feature Map (KFM).  The characteristic property 
of a SOM is that they are self-organizing; training runs without any controlling activities. 
SOMs project data points from the input space to a position in a low-dimensional output 
space. A SOM is given in terms of weight vectors, which map a data point to a neuron 
located in the map output space.  Similar patterns are assigned to neighbouring neurons in a 
way that clusters of neighbouring neurons represent assemblies of similar patterns in an 
objective process.  Having been trained, the recognized objects are associated with the 
neurons of the network.  The trained network can be used to recognize or identify new 
objects, which have not been learned yet. These will be associated by the network with its 
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respectively best fitting neurons. The best fitting neuron itself is member of a cluster, which 
in turn classifies a type of similar objects. In the context of kinematic data analysis, the SOM 
can be regarded as a software tool that reduces the amount of data with minimal loss of 
information content. Classes of input values are mapped to clusters of neurons. After the 
learning phase, input values can be classified as belonging to specific clusters, and in 
general hidden structures of the input data set can be detected.  While the use of SOMs in 
gait analysis has been prevalent, their use in the analysis of sporting performance has not 
been so extensive. Examples from gait classification have used kinetic as well as 
kinematic data. Koehle and Merkl (1996) classified patients into groups automatically with 
a SOM using the vertical component of the ground reaction force under both feet with 
results agreeing with the clinical classification of the patients. SOMs have been used with 
as little as three joint angles as in the case of Lakany (2001) who used SOMs successfully 
to group patients into clusters based on sagittal plane angles of the hip, knee and ankle 
joints.  In a study by Barton et al. (2000) joint range of motion angles were projected onto a 
SOM; with SOM results matching the classification by gait experts. The work of Barton 
(1999), Koehle and Merkl (1996) and Lakany (2001) have demonstrated that SOMs can 
visualise gait data and the rules underlying visualisation can be linked to gait patterns. 
Following a review of the literature on the classification of movement, the aim of this study 
was to develop and explore a method that facilitates identification of rowing movement 
patterns by visualising complex data in a simplified format, using SOMs, focusing on the 
kinematic data of the rowers. 
 
METHOD: 
Data Collection: Five rowers (four novices, one experienced; age 26±4.6 yrs; height 173±5 
cm; weight 74±4.3 kg) participated in the study. Ethical approval for this study was obtained 
from the University Research Ethics Committee. The participants performed a 2000m row on 
a RowPerfect ergometer (RowPerfect, CARE RowPerfect, The Netherlands). This distance 
was completed in 326±78 strokes. The participants’ kinematic data were captured at 200Hz 
(Motion Analysis Inc, USA).  Reflective body markers were placed on seven bony landmarks. 
From these joint markers five joint angles for the entire movement were identified.  
Fundamentally, from a biomechanical perspective, the joint kinematics of five major joints in 
the body can be used to define the performance of the rowing stroke.  A programme written 
in LabVIEW (V8.0, National Instruments Corporation, USA) was used to divide the data up 
into individual strokes. It took in the entire data set from the motion analysis system, and 
using the coordinates of the handle and the flywheel, identified the beginning of each stroke 
(i.e. frontstops position).  The software used these points in time to divide up the data set 
into individual strokes, from frontstops to backstops, and up to frontstops position again.  
Three dimensional joint angles (altogether 5 continuous joint angle variables) were 
presented to SOMs.  Subsets of these files were processed and the generated results 
enabled an alternative analysis of the 3D kinematics of the rower.  
 
Normalisation considerations: First, it was considered to normalise variables on the 
abscissa. This would involve normalising the joint angle time series data set variables to the 
entire rowing cycle (from frontstops position of one stroke to the frontstops position of the 
next stroke).  However, to normalise the data based upon this would be to nullify the 
importance of velocity in the rowing stroke. The exact same movement pattern, completed in 
a shorter time would result in a superior power output. Second, it was considered to 
normalise variables on the ordinate axis; using the range of each variable to determine the 
normalisation ranges of each curve. When applied to the current rowing data, the generic 
method of normalisation suggested by Kohonen (2001) (variance of each variable is 1) 
would result in the unwanted effect of cancelling out curve offsets carrying analytic 
information.  Also, different datasets would be normalised in different ways that would 
invalidate comparison between datasets. The temporal nature of the data was maintained by 
grouping three time slices of data at t(i), t(i+5%) and t(i+10%) of the movement cycle. Dynamical 
embedding (See Broomhead & King, 1986) was used to determine the optimal 



  Modeling and Simulation 

167 
 

representation of rowing dynamics. A program written in MATLAB (V6.5 – The Mathworks 
Inc, USA) performed the above tasks.  MATLAB reads data files generated by the LabVIEW 
software and plots any subject’s kinematics on conventional line charts. The program also 
displays SOM visualisation. Following this the selected files were processed and produced 
values normalised both to the rowing stroke and to the ranges used. Any one row of data 
contained values recorded at t(i), t(i+5%) and t(i+10%) of the rowing stroke thereby representing 
the temporal nature of the data. The data was then imported to the MATLAB SOM software 
(SOM Toolbox 2.0 Vesanto et al. 2000). 
 
SOM Training: A program was written in MATLAB which carries out the SOM training 
sequence by reading the data file, defining a SOM, training a SOM and generating the co-
ordinates of the best matching units. The program searches for and finds the functions of 
SOM Toolbox 2.0.  The size of the SOM (the number of nodes and proportions of the 
hexagonal matrix of nodes), the initial weights connecting the nodes, and the criterion for 
termination of training were determined automatically as a function of the rowing kinematic 
data presented to the SOM. A set of SOM nodes (an ordered sequence of joint angle co-
ordinates) formed a trajectory which represents one rowing stroke. The complexity of 5 joint 
angle curves is converted into a single trajectory of nodes on the trained SOM. Following 
training the internal weight vectors of the SOM were stored in a codebook. These vectors 
are small sections of the movement cycle (t(i), t(i+5%) and t(i+10%), as mentioned earlier) that 
developed as a result of the SOM’s adaptive training process. The concept of 
neighbourhood preservation was examined. This will not be elaborated on in this paper, but 
future work is examining the effect of altering this neighbourhood.  
 
RESULTS: 
The results of SOM visualisation illustrates how the SOM arranged the joint angle data 
following the complete training.  Each curve on the SOM represents a stroke.  This is then 
extended to include the larger data set, including in all the strokes. Of key importance here is 
the variation between the movement patterns of the subjects while completing the 
performance.  We can then compare these patterns to the variation of the normal movement 
patterns and normal variation seen when analysing time series, angle-angle, or relative 
phase plots. The dimensions of the data are different based upon the individual rower 
analysed as the SOM determines the dimension size based upon the input data (See 
Method). The larger variation in the raw data of some subjects leads to larger number of 
nodes in the output map. The individual SOM curves follow a path on the map which differ 
dramatically from each other. Of particular note is the difference between the experienced 
rower and the novices. The experienced rower has a much smaller map and that the data is 
more concentrated on particular areas. The novices (similar in their variability, but not their 
pattern) take up a larger area, again given by the number of nodes in the map.  
 
DISCUSSION: 
The complexity of kinematic joint angle rowing data can be reduced by projecting a large 
number of joint kinematic curves into a single curve on the SOM. The shape of these strokes 
follows the rowing patterns stored in the SOM’s CV and so the single curve is tightly linked to 
the underlying complex patterns hidden inside the SOM. The dimensionality reduction from 
five joint angles to one curve of the SOM allows it to handle the subject’s movement as a 
whole and to focus on joint angle patterns. The finer facets are also available by visualising 
the CV of the SOM. The trained SOM is a simplified representation of relative distances 
among rowing kinematic patterns residing in a multi-dimensional data space. The deviation 
of a rowers SOM curve from that of another subject is not assessed quantitatively in this 
study. However, it could give a qualitative reflection of how the two rowers attempt to 
biomechanically overcome the task. All of the data presented to the SOM was used to cover 
the available SOM surface. The flexibility of the SOM to the input data can be further utilised 
to focus on small details. Following training the resultant curves look different but show the 
ranking of subjects in more detail. The movement of the SOM curve can in the future be 
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used as an indicator of how well the rower is progressing in a longitudinal study. The effect 
of instruction and different techniques and styles could be measured using the SOM 
projections as overall measures of how well rower performs. 
This study shows that most of the SOM trajectories are closed – the joint angles at the 
beginning and the end of a rowing stroke are nearly identical (and in some cases are exactly 
identical) and so are mapped to the same location of the SOM.  The gap between the first 
and last nodes of the SOM curve is due to only 90% of the movement pattern being 
presented to the SOM. The patterns that exist in the codebook only cannot be found in any 
of the rowing patterns presented to the SOM as they are compressed forms of all the 
patterns that are close to each other. Each individual SOM contains several such clusters all 
representing a rowing stroke. Some of the clusters represent previously unidentified complex 
patterns that involve 3D joint angles. These unnamed clusters are the ones that are difficult 
to identify unless a multivariate data processing tool can visualise them. These clusters are 
related to their topology on the SOM expressing all the features, which make up the rowing 
stroke pattern.  
 
CONCLUSION: 
In this study, the power of KFM was used to visualise complex rowing patterns in the form of 
single curves. The SOM operates by convergence of the movement data to stem-patterns 
that are arranged on a relational map in the context of the total data space presented to the 
SOM during training. The method enables identification of existing movement patterns and 
opens up the possibility of defining new possible patterns that are otherwise difficult to find in 
the multidimensional data space. The method gives repeatable dimensionality reduction with 
a resolution that can be controlled by careful selection of the input data. The 
multidimensional ranking of subjects is possible both cross sectional and longitudinally. The 
method used in this study may provide an alternative representation of movement analysis 
results, which can cope with the complexity of the data and can help to make decision 
making more repeatable and so more objective.  
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