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In contrast to widely researched areas of convergence such as between Artificial 
Intelligence (AI) and medicine there is minimal evidence of AI in biomechanics for sports. 
The main focus of this paper is the development of AI coaching systems with a high 
degree of autonomy that can discover new knowledge from data. This paper relates to 
areas of AI, biomechanical data, and qualitative analysis of human movement. It first 
provides an overall rationale for possible AI implementations then reports machine 
learning related findings from AI golf coaching software and a tennis coaching prototype. 
A point of view, presented as a scope, is that the future role of AI in sport coaching is 
about automation, knowledge discovery and enhanced human-like interaction. 
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INTRODUCTION: Contemporary sports professionals and coaches use their expertise and a 
variety of software systems for video indexing and analysis (Knudson and Morrison 2002). 
The overall aim is to facilitate visual feedback to the trainee or learner to improve techniques 
and to eliminate errors. In general existing systems have several limitations (Bacic and 
Kasabov 2002); they: 

• Must be operated exclusively by sport professional experts, 
• Lack adaptability (i.e. there is no adaptive learning), 
• Lack automated explanations and reasoning that include "cause and effect" 

descriptions. 

FIRST GENERATION AUTOMATED COACHING 
To illustrate recent state of practice (in automated coaching) this section will present two 
examples from golf while the next section will propose a novel approach using a tennis case 
study. 

1) LeadbetterInteractive (2005). To facilitate learning, multimedia rich content is used to 
convey information to enable the user to watch instructional video clips and record his/her 
own video (including experiment settings and video transfer to a computers’ instructions). 
The drill-based coaching software follows the coaching paradigm of cyclic nature (i.e. 
preparation-observation-evaluation/diagnosis-intervention) introduced as a four-task 
integrated model of qualitative analysis (Knudson and Morrison 2002). From the perspective 
of Machine Learning (ML) the LeadbetterInteractive system employs a static set of rules 
implemented as a decision tree. Perceived individual faults can be identified by the user 
when comparing his/her video with video demonstrations containing superimposed animated 
key features. The role of the decision tree is to interrogate by a set of closed questions (i.e. 
yes/no) the user's perceived (i.e. identified) faults and generate intervention by automatically 
proposing only a relevant set of drills as video clips for improving swing technique.  

2) SmartSwing (2005). SmartSwing uses a microelectronic device embedded in the shaft of 
a golf club. The device is able to record up to 100 swings at 1000 samples per second. 
Biomechanical 3D time series data are uploaded from the golf club via wireless link to a 
computer. Individualisation in software is achieved by keeping each player’s biometric data 
along with the player’s handicap - resulting in four expertise levels of swing evaluations.  
Biomechanical data collection in this case imposes a minimal degree of obtrusiveness during 
play (i.e. only a club “feel” is limited to physical attributes of an “intelligent” club). Data 
acquisition requires minimal experimental set-up (i.e. recharging the batteries and deleting 
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old data) with no postproduction labour (e.g. manually marking events and reconstructing a 
stick model). Swing data of a player’s body are not collected but estimated later by software 
analysis. The theoretical basis of correlation between the player’s body and point of impact 
(or throw) has been reported as findings on a hypothesis that accurate 3D information of a 
trajectory of hitting surface around the point of impact can indicate related swing technique 
(Bacic 2003). With suppressed body movement data the prototype was able to classify 
strokes i.e. to categorise tennis swing technique from previously unseen data of a hitting 
surface around the point of impact. While the prototype did not use coaching rules to 
evaluate body action during the tennis swing, a prototype was able to provide simple Gestalt-
type feedback by distinguishing swings into three output classes (i.e. good, bad and very 
bad). 

THE NEXT GENERATION OF AUTOMATED COACHING – THE AI PERSPECTIVE: 
The sub-disciplines of AI, most likely to be involved in next-generation coaching software, 
are: ML, Emerging Intelligence, Evolving Connectionist Systems (ECOS) (Kasabov 2002), 
and Data-mining (Witten and Frank 2005). 
 
Requirements: In choosing an adequate connectionist system for an automated tennis 
coaching prototype, two approaches from kinesiology have most inspired the prototype 
implementation: 

1. Systematic Observational Strategy (SOS) i.e. “moving from general to specific 
technique points, and rating the importance of the critical features” (Knudson & 
Morrison, 2002, p. 162). 

2. Temporal and Spatial Model (Gangstead and Beveridge 1984).  
Decisions from the Machine Learning and Software Engineering perspective are: 

1. SOS must be implemented in an evolving manner, supporting adaptive learning. 
2. SOS must be configurable in both directions i.e. from general to specific and vice 

versa. 
3. Rating of the critical features must be both configurable by the expert or auto 

configured by the prototype referring to personalised database holding information 
about each individual’s progress. 

4. The prototype must be able to learn rules from data. Rules describing relations and 
critical features must be extracted and presented in an understandable manner. 

5. Both data and rules (stored as knowledge) can be used to train the system to operate 
with new, previously unseen data. 

6. Other desirable parameters: Real-time and inexpensive computation robustness, high 
classification accuracy, ability to learn from an initially small data set, modular 
construction allowing enabling/disabling individual modules or adding new evaluation 
modules to the system, automation (e.g. extracting events in temporal analysis). 

Experimental Findings: To achieve automation in temporal phasing using 3D stick figure 
time series data a novel algorithm was proposed (Bacic 2004). Compared to expert event 
extraction (i.e. by manually recording each event’s index of start and end frames) the 
algorithm’s accuracy was evaluated as start frame average error 0.789 end frame average 
error -0.16, which in conclusion indicates reliable automated extraction of segments of 
forehands and backhands (including open and closed stance). Each item from a spatial 
observation (Gangstead and Beveridge 1984), or critical feature and/or cue (Knudson & 
Morrison, 2002, p. 162), represents a new heuristic or a coaching rule. Each new module is 
responsible for classification of a single coaching rule and has been trained with transformed 
data i.e. features obtained from further transformation of biomechanical data as in Figure 1. 
In Bacic and Zhang (2004) three alternative evolving architectures have been evaluated 
producing on average 95% prediction on a small data set. The proposed architectures of 
multiple connectionist subsystems or single neuro-fuzzy system are conceptually depicted in 
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Figure 1. Both architectures use Neuro Fuzzy ECOS modules to learn from data and extract 
knowledge presented as a set of rules.  

How ECOS works on a problem? 
After extracting the rules, another layer of abstraction is needed (see Figure 1) to present 
rules to humans either as visually (image, video, and graph) or as verbally using words (e.g. 
“Forehand”, “Arm-body relative distance”) related to sport terminology. With too many rules 
resulting from multidimensional problem space (i.e. with many cues and critical features 
evaluated) it may become impossible for a person to comprehend presented knowledge. 

IF
x1 is (low: 0.045455) AND x1 is (high: 0.95455) AND
x2 is (low: 0.44107) AND x2 is (high: 0.55893) AND
x3 is (low: 0.36728) AND x3 is (high: 0.63272) AND
x4 is (low: 0.31908) AND x4 is (high: 0.68092) AND
x5 is (low: 0.95455) AND x5 is (high: 0.045455)   

THEN
Class is 1 [# samples = 3 , Radius = 0.14719]

IF
x1 is Forehand AND
x2 is Arm - body distance (close: 44%) AND  (too wide: 56%) AND
x3 is (low: 0.36728) AND x3 is (high: 0.63272) AND
x4 is (low: 0.31908) AND x4 is (high: 0.68092) AND
x5 is (low: 0.95455) AND x5 is (high: 0.045455)   

THEN
Class is: Bad swing [# samples = 3 , Radius = 0.14719]

…
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Figure 1: Extracting rules from tennis swing and their further transformation (Bacic and Zhang 2004). 

Critique: The more coaching rules are evaluated the more data is needed for training. With a 
small initial dataset and its set of attributes: 

1. It was not possible to optimise parameters or to conduct real life validation using 
multiple experts,  

2. It was possible to extract rules related to a subsystem with known final output class.  
3. It is not possible to claim which ECOS is better – i.e. more suitable for a particular 

task. 
 
Table 1: Terminology 

AI Term Description 

adaptive learning Learning supported by ECOS. On-line learning, incremental learning 
and lifelong learning are also introduced in Kasabov (2002, p. 16). 

classification Associating features with existing groups. 

coaching rules  Inference rules from input features to output class based on coaching 
experience (also called heuristics or “rule-of-thumb”). 

decision tree A hierarchical system that selects amongst many variants. 

feature extraction Analytical process to reduce data to most distinguishable parameters 
for classification made by a connectionist system 

heuristics Human common sense knowledge, difficult to program. Articulating 
heuristics for solving AI problems is presented in Kasabov (1996) 

output classes  Result of classification, e.g. every input sample must belong to a group 
ROI (see Figure 1) Region of Interest – e.g. equivalent to event in temporal observation 
Training A connectionist system needs a training phase before autonomous 

operation with previously unseen data (e.g. evaluating data according 
to internal knowledge which is implemented as a coaching rule) 

DISCUSSION: Sport professionals can use methods from machine learning on 
biomechanical data to “make sense” of the data by discovering rules, testing hypotheses and 
automating some of the time-consuming tasks. Initially, ML terminology (formatted in italic) 
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may be confusing (given possible term overloading across domains, e.g. see Table 1) and 
potentially misleading. “First-time users” – researchers, should start experiments with 
software tools such as NeuCom (Song, Kasabov et al. 2005) and Weka (2005) – a tutorial is 
included in Witten and Frank (2005). Both free tools can be downloaded from:  

• NeuCom www.theneucom.com  
• Weka  www.cs.waikato.ac.nz/ml/weka 

CONCLUSION: Favourable experimental results to date encourage further cross-disciplinary 
research in biomechanics, sports science and AI, encompassing data acquisition techniques 
and the provision of personalised feedback.  
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