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This study investigated the influence of different marker sets and different leg positions 
on time histories of skeletal kinematics of the lower limb. Surface markers were attached 
to the thigh and the shank to reproduce their kinematics during a knee movement cycle. 
Certain selections of posture and marker sets minimised the expected measurement 
errors without further optimisation procedures. However, the results showed an 
approximation to skeletal movement, only. The results lead to recommendations for the 
use of skin based marker systems.  
 
KEY WORDS: knee movement cycle, surface markers, rigid body modelling, bone 
position 

 
INTRODUCTION:  
To analyse whole body movements surface markers are adequate regarding accuracy of the 
data (Schache et al., 2002).The analysis of single joints or skeletal kinematics require higher 
accuracy. Measurement errors have to be expected when surface markers were used to 
estimate skeletal kinematics (Fisk, 2004; Cerveri et al., 2005). Movements of soft tissues 
around the bone are the main reason for measurement errors. Skin movements relative to 
the bones caused by muscular activity, skin elasticity, or soft tissue movements due to 
impacts increase with higher magnitudes of movement amplitude and velocity. The amount 
of sub-skin fat tissue, associated with the water content, influences the vibration by natural 
frequency. These non-rigid parts are characterised as wobbling masses (Günther et al., 
2003). Muscle movements also lead to skin deformations in particular where they directly 
underlie the skin. Skin thickness and strain can also effect marker movements. These 
aspects constrain the application of skin based marker systems and the accuracy of the data. 
The errors may be minimized by using special fixtures, e.g. orthoses, marker clusters or 
mathematical algorithms as used for rigid body modelling (Cappozzo et al., 1996; Cappello et 
al., 1997; Andriacchi et al., 1998; Alexander and Andriacchi, 2000; Fisk, 2004). The marker 
cluster technique was used to estimate the bone position by the geometrical centre of the 
marker cluster. Therefore, the geometry of the marker cluster and the number of markers 
influence the accuracy level of the calculated bone position. In this context the purpose of 
this study is to investigate three strategies to minimise the influence of skin based markers 
on the accuracy of the kinematic data. Strategy I was to use different postures of the leg in 
order to minimize additional skin deformations or vibrations during a knee movement cycle 
(KMC). Strategy II reduced the number of markers in a controlled procedure. Strategy III 
allocated markers to marker cluster in a controlled marker selection. 
 
METHOD:  
Right leg kinematics were captured in one subject, using a 6 camera (MX3, 240 Hz) Vicon 
system. The right knee was free of pain, trauma and able to work under load as well as to 
perform full range of motion (ROM). 44 markers on the right thigh and 37 markers on the 
right shank were placed non-collinear and in randomized order around the segments to 
desensitise the geometrical centre of mass against random marker movements. Markers 
were fixed with a distance of 2 cm to each other. The kinematics were captured for a full 
extension-flexion motion in the knee joint (knee movement cycle) and skeletal motion was 
calculated with MATLAB™. The method to calculate the skeletal kinematics was derived from 
point cluster techniques by Andriacchi et al. (1998). Lindner et al. (2007) elaborated some 
method steps on this calculation. To minimize the effect of measurement errors and the 
influence of specific marker positions on the geometrical centre of mass, three different 
strategies were evaluated. Strategy I: Three different postures, e.g. standing, leaning and 
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Table 1 Maximum of the local marker 
displacement on the thigh 

Table 2: Maximum of the local marker 
displacement on the shank 

The difference in eigenvalue change in standing position is 82 % lower than in seated 
position and 2% lower than in leaning position (Figure 2). This finding leads to the 
assumption that the standing position provides the best results. Results of strategy II 
represent a positive dependency of the rigid body behavior and the number of markers 
(Figure 3). 
 

Figure 2: Deviation from the rigid body 
behavior on the thigh with respect to three 
postures 

Figure 3: Deviation from the rigid body 
behavior in consideration of marker sets 
on the thigh 

The reduction of 28 to 20 markers improved the results by 65 %. The reduction of 20 
markers to 16 markers gained once more a minimisation of 20 %. One could assume that the 
rigid body behaviour could be improved with fewer markers. This reduction may lead to an 
increasing deviation between locations of the segmental centre of mass and the geometrical 
centre of mass defined by the marker cluster. The same results were found for the shank 
when reducing the markers from 19 to 6. Consequently, the eigenvalue change could be 
minimised up to 96 %. Strategy III leads to the assumption, that MLC may be more suitable 
for reconstructing the rigid body kinematics of the thigh. The eigenvalue change of the VLC 
deviated with 55 % more from rigid body behaviour than the MLC. On the other hand, using 
this cluster leads to the problem that medial markers may be hidden by other body parts 
during gait analysis. To estimate the skeletal kinematics of the tibia, the front face of the tibia 
(margo anterior and facies medialis and lateralis) was selected. Figure 4 (A, B, C, D) shows 
few soft tissues are located only between skin and underlying bone. Due to these anatomical 
bases, markers can be approximately placed on the tibia. Anatomical and functional aspects 
have a considerable effect on the error minimisation. 
 

 
 

Figure 4: Section view by the proximal third (A), the middle third (B), the distal third of the 
shank(C, Platzer, 1997, p.257) and six placed markers (chequered) on the ventral side of the 
shank (D, Lindner et al. 2007).  
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CONCLUSION:  
It is not possible to separate between errors due to measurement problems while capturing 
markers with a camera system properly, due to the influence of soft tissues. This has to be 
considered during the description of movement characteristics of the lower extremity. It is 
recommended to analyse a full knee extension and flexion movement in standing position to 
estimate the skeletal kinematics. Three to five markers should be used for each area of the 
thigh to reconstruct the skeletal kinematics. To avoid further errors in the data three to six 
markers may be placed on the front face of the shank to model the tibial kinematics. It is 
easier to determine the rigid body behaviour for the shank than for the thigh. This could be 
stated, because the ratio between bone and soft tissue regarding the shank was supposed 
to be smaller.  
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