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Introduction 
Kinematic analysis of motion often requires the evaluation of 

quantities not always directly measurable, like velocity and acceleration 
in order to be complete. (Hatze 1984). Acceleration could be measured 
by means of accelerometers fixed to the landmarks to be analyzed, but 
due to the disturbance ofthe subject it is better to compute them from 
the landmarks' trajectories evaluated by means ofa movement analyser 
using a passive marker, like the ELITE system (Ferrigno and Pedotti 
1985). 

In the analysis of sport performances, as well as, in critical 
pathological studies, maximum freedom of movement is mandatory, 
otherwise the results obtained will be biased and insignificant. This 
generates the need for an analysis that is characterized by minimum 
disturbance of the subject. 

The first and second derivatives of the trajectories of the 
landmarks or of the angles computed between segments identified by 
markers, can be evaluated by numerical methods from raw spatial 
coordinates. 

The main problem which arises at this point is due to the noise 
superimposed on the useful signal which heavily affects the outcomes. 
Whatever the means used to acquire the data, these will be modified by 
measurement noise. Noise including quantization and distortion due to 
algorithms, distortion corrections and 3D reconstructions lead to 
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moderately ill-posed problems when attempting to estimate the 
derivatives CWoltring 1985). An exhaustive review of methods used to 
compute derivatives from noisy displacement data can be found in 
Woltring, 1985 and Wood, 1982. For the purpose of this paper only, the 
main features of the approaches therein already considered will be 
reported. The method proposed and later described can be classified 
among those belonging to the frequency domain filters, the parameters 
of which are estimated directly from the measurement. 

Several examples of applications in classic literature data 
(Pezzack et al. 1977; Lanshammar 1982; Vaughan 1982) and laboratory 
acquired data referring to sport movemen ts are reported in order to 
assess the performances of the filter. 

Time and Frequency Domain Approaches 
Both time and frequency domain approaches have been widely 

explored in order to produce algorithms for data smoothing and 
derivative estimation. 

The frequency domain approach has been used by Cappozzo et 
aI, 1975, Jackson, 1979; and Anderssen and Bloomfield, 1974, while 
Pezzack et aI, 1977; Winter et aI, 1974; Soudan and Dierckx, 1979; Wood 
and Jennings, 1979; Gustaffson and Lanshammar, 1977; Gasser et aI, 
1986; Parks and McClellan, 1972; Jetto, 1985 followed the other one. A 
detailed description of all these methods is not reported herein, but the 
interested reader can find them in the references. The main problem 
which arises in both approaches is the bandwidth selection and/or the 
optimal windowing choice. A compromise between biasing the data in 
terms of frequency content of the signal and the noise magnification 
typical of the derivation operators must be found. Several of the cited 
authors guessed the parameters of the filter, choosing the final value by 
trial and error, while others had to set (Jackson, 1979; Cappozzo et aI, 
1975) thresholds based on the rate of reducing the residual error. 

More interesting are the methods of the Generalized Cross 
Validation Criterion (GCVC) applied to spline functions (Craven and 
Whaba, 1979) and the Optimal Regularization of Fourier Series 
(Anderssen and Bloomfield, 1974), in which given the criterion, the 
choice of the optimal filtering window was automatized. 

At least two reasons strongly support the automatization of the 
choice of filter parameters: the time savings and the homogeneity ofthe 
results. In fact, if a parameter must be guessed by trial and error, the 
operator is forced to review the obtained results before proceeding to the 
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next step. This wastes time. Furthermore, different operators could 
produce different outcomes from the same data. 

The aim ofthis work has been to design an automatic filter able 
to search its own bandwidth using the least amount oftime possible. 

Hypotheses 
The filter which will be described, as well as those cited above, 

gives effective results only if five conditions are met: 1) the noise is 
additive; 2) it is uncorrelated; 3) it is stationary, and 4) the signal has 
been sampled at equidistant intervals and 5) the sampling rate is at 
least twice the maximum frequency content ofthe signal according to 
the Shannon theorem. In order to make our filter work properly, a 
further hypothesis must be included: the frequency content of the 
signal must be reasonably contained within 40 percent of the sampling 
rate. This constraint is in good agreement with the error formula 
presented by Lanshammar, 1982b. In fact, according to this formula, 
the sampling rate must be higher than the Shannon limit in order to 
obtain low noise derivatives. 

Algorithm 
The block scheme of the designed algorithm is reported in 

Figure 1. Raw data f(t) is used in order to evaluate the probable useful 
bandwidth of the signal itself and is preprocessed in order to avoid edge 
shape distortions due to implied periodicity. Mter these two parallel 
operations, the filter extracts from the signal the part which is 
characterized by a reasonable signal to noise ratio. This part, denoted 
as f/\ (t) is then derived twice producing the first (velocity) and second 
(acceleration) derivatives off/\ (t): fl\' (t) and f/\"(t). 
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Figu~e 1 - Algori thn block schane 

Bandwidth evaluation: 
In order to evaluate the bandwidth of the signal, its spectrum 

must be estimated. Theoretically, the bandwidth of a landmark 
coordinate is unlimited, but practically, in particular when derivatives 
must be computed, a limit must be imposed in order to obtain a useful 
signal to noise ratio. The chosen cut off frequency is the one for which 
the signal falls below the noise level. In order to find this value, the 
spectra of the signal and of the noise should be well known. When this 
is not the case, a certain number of hypotheses and approximations 
must be used to find the values. The hypotheses have been stated 
before and they will be used here, in order to build up the algorithm. 
The first step is the estimation of the signal plus the noise 
(measurement) power spectrum. There are various methods which can 
be used for this purpose, a review can be found in Kay and Marple, 
1981; and Makhoul, 1975. Due to the shortness of the data records 
typical of many fast sportive acts, and the necessity of obtaining sharp 
well defined spectra, the autoregressive (AR) forward backward 
algorithm (Kay and Marple, 1981) has been chosen. This algorithm fits 
the measurement data by a model which assumes that each sample of 
the signal is a linear combination of its (P) preceding or future values. 
The coefficients ofthis combination are the parameters of the AR model 
ofthe order P as follows: 
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The noise superimposed on the signal is evaluated, according to lximum 

one of the hypotheses, as the average value of the power of frequencies a short 
between .8 FN and FN, where FN represents one half of the sampling of peak 
rate. The cut off frequency has been set where the PSD overcomes 20 average 
times the noise level, in order to attain a high signal to noise ratio. In death. 
order to avoid slow oscillating effects on the high order derivatives due hat the 
to sharp truncation of the signal spectrum, the power of the signal is for the 
assumed to decrease linearly from the cut off frequency to twice this energy 
value. Summarizing, the Discrete Fourier Transform (DFT) of the atterns 
measurement is windowed by a function unitary up to the cut off I1bative 
frequency and decreasing (Wiener weighed) up to twice this value. The 1, is the 
way in which the DFT ofthe measurement is obtained will be described 
in the next subsection. The order P of the model has been determined 
by the analysis of the practical data and by choosing the value for which 
the cut off frequency shows an asymptotic behavior. This value range 
is between seven and ten. We have chosen the latter on the basis ofthe 
residual whiteness test results. 

Signal Preprocessing 
The purposes of the signal preprocessing are to: avoid edge 

effects, prepare the signal to be transformed by a fast algorithm (Fast 
Fourier Transform or FFT) and to perform the transformation. 

The edge effects are prevented by extrapolating the 
measurement one second before and one second after using the 
prediction model obtained in the previous section and by cosine tapering 
these extensions to the average value (AV) of all the extrapolated 
values. In order to apply FFT, the signal is padded up to the nearest 
power of two by the AV. The preprocessing ends by transforming the 
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measurement in the frequency domain by the FFT algorithm. 

Filtering and Derivative Evaluation 
The filtering of the measurement is performed by multiplying 

the DFT obtained in the previous subsection by the window already 
determined. Mter filtering, the derivatives are computed by 
multiplying each windowed DFr component by jw and _w2 respectively. 
The antitransformation of the three frequency domain sequences leads 
to a time domain representation ofthe filtered signal and its estimated 
derivatives which represent the final result of the proposed algorithm. 

Results 
In order to test the algorithm and permit a comparison with 

other methods reported in the literature (see references), we have 
processed the raw data presented by Pezzack et aI, 1977 and the same 
with added noise reported by Lanshammar 1982a. These data refer to 
the angular displacement between hand and forearm during two 
abduction-adduction phases, the first executed slowly and second quite 
quickly. As reported in Figure 2, the filtered data provide an excellent 
fit to the raw ones, as proven by the residual error of 0.002 radians. The 
second derivative conforms closely to the data of the accelerometer 
reported in the same paper showing similar amplitude peaks and low 
noise in the low amplitude phase. 
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Figure 2 - A) Raw angular displacement data frCJTl [Pezzack et al. 19771 
B) second derivative of data in A), cut off frequency 5.1 Hz 
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These data are, according to Lanshammar 1982a, too good. In 
fact he estimated a noise standard deviation of only 0.0013 radians 
which i a v lue lower than in many practical cases in biomechanica1 
measurements. In order to create a set of data more realistic, this 
author increased the noise synthetically by adding a gaussian white 
noise with zero mean and 0.006 radians of standard deviation, thus 
achieving a new signal more difficult to process. By using these data we 
obtained the results of Figure 3. n this case, as expected, the second 
derivative appears to be more smooth than the previou one. In fact, the 
algorithm set a lower cut off frequency in order to reduce noise 
rna ification. but despite the lower cut offfrequency. the information 
contained in the second derivative has not been degraded. 
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figure) - second derivative of the data fran [Lansham1ar 1982a1 
Cut off frequency 4.5 Hz 

Another set of data that we used to test the method is the one. 
referring to a free falling ball, provided by Vaughan 1982. These data 
point out a limit tion of our algorit.~m due to the extrapolation used. In 
fact teAR model, instead of trying to model the parabolic behavior of 
this trajectory, interpolates it with a slow varying sinusoid. This wrong 
interpretation generates strong edge effects which diffuse deeply inside 
the useful signal as shown in the second derivative reported in Figure 
4. It can be seen in this figure that the acceleration oscillates around its 
true value of -g. 
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In order to show that the problem of Figure 4 is due to the 
particular signal and not to its edges which are strongly different, we 
report an analysis performed on a sinusoid corrupted with a gaussian 
white noise with a standard deviation of 0.015 and featuring edges with 
different values. The results reported in Figure 5 show the very good 
behavior of the filter, in fact, no edge effects propagated inside the 
useful signal. Two other examples are reported in Figures 6 and 7 
where data acquired by the ELITE system of the Centro di 
Bioingegneria of Milan are reported. These data refer to an Abalakov 
test (Figure 6) and a sprint start (Figure 7). The data of Figure 6 refer 
to the trajectory of a landmark positioned on the hip of the athlete. 
Three peaks are evident in the second derivative along the vertical axis: 
the first one refers to the prestretching phase, the second to the take off 
and the third to the landing. Due to the high amplitude of these peaks 
the chosen bandwidth causes oscillations aroW1d the -g value during the 
flying period. Would someone be interested in analyzing this part? It 
should force a lower bandwidth paying the cost of a drastic reduction in 
the amplitude of the peaks. 

J.TlME (s) 

Figure 4 - Free falling ball acceleration estimate 
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Figure 7 - Sprint start: A) hip marker coordinate vs. time, B) 2nd derivative 
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TIME (5) 
Figure 5 - Test perfoaned with a sinusoid: A) raw signal, BI second derivative 
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Figure 6 - Abalakov test: A) hip marker coordinate vs. time, B) 2nd derivative 

figure 7 sro"5 tt'e rrovenent of tt'e hip marker durirq tt'e pushirq phase of tt'e start 
sprint, togett'er with t!'e canputed acceleration. 
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