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INTRODUCTION 
Dynamic locomotion is characterized by a cycle of movement that includes a 

phase of support as well as a ballistic flight phase. The most current models of this type of 
locomotion involve the use of a simple or damped spring-mass system (McMahon and 
Green, 1979; Blickhan, 1989). Each of these models uses rather simple approximations 
(point-like mass, and massless spring) of the complex human anatomy. They use the 
dynamic variables but completely neglect the control process. Moreover, these models 
do not describe a realistic behavior of the system at some instant in time. In reality, a 
complicated process - depending on anatomy, posture, and muscle control - gives rise to 
a wide variation in system stiffness as the takeoff leg moves over the support foot. In 
previous models however, the system stiffness k is kept as a constant during the support 
phase. The problem encountered in developing an analytical approach for coaching is 
the unavailability of a mathematical model that accurately describes support phase 
mechanisms. The purpose of this study is to create a mathematical model that gives all 
the features influencing distance. This model will thus become a tool for coaches to 
design individual performance in a heuristic manner. 

METHODOLOGY 
We are dealing with the four important factors (dynamic variables, anatomy, 

posture, and controlling) which govern dynamic locomotion as far as translation is 
concerned. We use the dynamic variables - the linear momentum and the force as 
functions of time. The human anatomy is approximated by a point-like mass (the center 
of gravity of the individual human body), and a leg/foot system that provides for the 
right distance between the center of gravity and the center of pressure during the support 
phase. This point-like mass and leg/foot system is also what is necessary for describing 
the posture. A vital point of the dynamic locomotion of athletes is their ability to 
execute their movement by controlling the system stiffness during the support phase. a 
fact that most earlier models did not take into account. 

In our model the system stiffness k(r) is a function of time. Similar to the work 
of Blickhan (1989) we derive the equations: 

1 ·1 

(1)y"( r) = y( t) c.o2( t) 
"';y2( r) + z2( t)~ 

z"(r) (2) 
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Here yet) is the horizontal jump direction, z(r) the vertical jump direction, y"(t) the 

Ni acceleration in y-direction, z"(r) the acceleration in z-direction, I is the distance betwet 

pa the center of gravity and the center of pressure at take-off, k(r) is the system stiffness, ~ 

is the gravitational acceleration, and 
ro(r) = v"k""T(r"T)~\-m (3 )Rc 

3C is the frequency of the system which depends on the system stiffness and the mass m. 

Se However, unlike the work of previous authors, our use of the system stiffness makes it 

sh possible to describe the control process during the support phase, and allows damping 
Kl and muscle work. 

The system stiffness of an actual performance can be calculated from collected 

SI force data: 

SlJ F(r) .11( r) 

C k(t) = (4) 
.1l( t)2 

T Here, F is the force vector and I the vector between the center of pressure and the center 
aJ of gravity whereas modifications of this measured curve are signs of a modified tech

nique. 

1 The necessary input parameters for our model are as follows: the system stiffness 

c as a function of time during the support phase, the mass of the subject, the velOCity 
vector of the center of gravity at touch-down, the distance between center of gravity and 

1 center of pressure at touch-down, distance between center of gravity and center of 

I'i pressure at take-off, the touch-down angle at support phase, and the touch-down angle at 
the landing. 

l To solve the coupled differential equations (I) and (2) we use an iterative 
c method on a PC and input the k(t) from a data file. The deviation caused by this PC 

calculation is smaller than 0.1 %. 
The first experimental proof of our model was done in the biomechanics 

laboratory at The University of Michigan, Ann Arbor. Here, we used a Sertec force 
plate, three video cameras (60 Hz), and a Motion Analysis System. A subject was 
marked with four reflective markers on the right side of the body: on the shoulder, the 
hip, the heel, and the toes. We used the Motion Analysis System to get the coordinates 
and the velocity of the four points during twenty jumps. The force plate gave the force 
with a frequency of 500 Hz. 

The touch-down angle, the take-off angle and the distance between the center 
of gravity and the center of pressure had been calculated with the help of a computer 
program based on the HANAVAN MODEL, and using the individual anthropometric 
data and the posture of our subject. 

RESULTS and DISCUSSION 
Although simple, the model presents all the necessary parameters to calculate 

the coordinates of the center of gravity. This includes the derivations with respect to 
time - velocity and acceleration· as functions of time during support (see Figure 1) and 
flight phase. We calculate the jump distance by using the anatomical leg/foot lengths 
and the system stiffness as a function of time. Mechanical energy, the kinetic energy 
(translational energy but not rotational energy), the potential energy, and the elastic 
energy, are calculated for the entire jump (see Figure 2). Most important for coaches is 
the possibility to use this model to obtain the necessary input parameters for an optimal 
jump distance. This means, by designing the jump on the computer one can determine 
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Figure 2. Mechanical energy. 
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Figure 1. Support phase coordinates and derivatives. 
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the best initial parameter for the individual athlete to excel. 

In our first experimental proof we were able to demonstrate that our calculation 
consistently agreed with the results (Table 1). It is evident that this first proof is just a 
step in verifying our model experimentally. A more precise experiment has been planned 
using a different motion analysis equipment, appropriately chosen for this specific task, 
and sensitive enough to detect even minute differences in the perfonnance. 



Table 1. Resul ts of jump based on the model. Ni 
pa 

Experimental Data Mathematical Model 
Phase Initial Earameters Rc 
Step30 

horizontal velocity (m/s) 2.8 - 4.1 3.4Sc 
vertical velocity (m/s) -0.5 - 0.5 0.15sh 
touch down angle (0) 114 - 126 120K{ 
distance between 
CoG - CoP (m) 0.85 - 0.95 0.9St 

SUi Landing 
touch down angle (0) 86 - 94 90Cl 
distance between 
CoG - CoP (m) 0.2 - 03 0.25Tc 

Resultsan 
distance (m) 1.41 - 1.45 1.45 
airborne time (s) 0.50 - 0.53 0.51Tc 
support time (s) 0.23 0.225c!t 

CONCLUSIONSTc 
Our model exhibits all features necessary to design an optimal support phase for rel 

individual athletes. To achieve this, we calculate the optimal initial parameters by using 
a given and/or designed system stiffness. Our mathematical model is thus a tool forTc 
computer-aided training in horizontal jumps. A coach who is familiar with scientific S1= 
methods can use it to guide athletes according to their individual ability. 
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