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INTRODUCTION: This paper considers the results of the authors' research on the 
goal-oriented computer synthesis of human motions in support and non-support 
phases. The main attention is paid to the synthesis of pushing phases. In 
particular, an analysis of running long jump and acrobatic jump sequential 
optimization results is made. The computer modeling of complex coordination 
motions is based on the development of an adequate anthropomorphic model 
(AM). The employment of differentiated non-stationary holonomic and non-
holonomic constraints equations proved to be most effective in the developed 
modeling system for the purpose of goal-oriented motions modeling [1]. 
 
METHODS: Let us consider the motion equations of a general type with non-
stationary constraints. As a rule, the right side of these equations includes the 
vector-column of generalized forces , where - vector-column of 
generalized coordinates and its derivative with respect to time t, correspondingly. 
For the goal of the motions’ simulation 
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U can be presented as a sum of three 
parts. From inverse problem of dynamics U  can be calculated as . 
Parametric control of the model via selection of characteristics of springs and 
dampers in joints requires the representation of 
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U  in the form ),( qq &2UU = . And, 
finally, non-stationarity of constraint equations actually requires that equation 

λPUU ′−== 3  be satisfied, where ′P - Jacobian matrix of constraint equations, 

),,( qqt &λ - vector-column of Lagrange multipliers. Thus, the structure of 
generalized forces column should be as follows: ),,( qqtU &
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For descriptions of additional non-stationary items in constraints equations we 
used parametrically controlled smooth approximation functions which allowed us to 
synthesize desired motion trajectories, ground reaction forces and kinetic moment 
increments. For example, they can be represented as polynomial functions of the 
5th order, which allows us to set boundary conditions for coordinates and velocities 
and keep the continuity of accelerations for the adjacent parts of complex non-
stationarities. Another kind of function useful for ground reaction force simulations 
can be presented as a combination of power functions: 
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where included parameters define the shape and amplitude of the components of 
the support force and T is the duration of the support phase of motion.  
Further, let us consider some types of constraint equations. The most general case 
is when the absolute or relative motion of certain AM points, for example, their 



 

joints, is preset. In particular, for two arbitrary joints with corresponding numbers k 
and j, the vector constraint equation is: 
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where  - absolute radius-vectors of joints k and j; jk RR
rr

, αk - parameter-indicator of 
absolute (=0) or relative (=1) motion.  
For the preset motion of the center of mass (

r
Rc ) of the system and/or its kinetic 

moment ( k ) the next constraint equations in differential form can be used: 
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In these equations 11,MN
rr

 - external force and torque applied to the model; 0r
r

 -
absolute radius-vector of support point.  
It should be noted that among the above-listed possibilities of movement 
simulation, constraint equations allow us to obtain the most constructive results in 
the synthesis of new motions, as well as adequate modeling of concrete motions. 
Due to the non-stationary nature of constraints equations, any experimental data 
on kinematics and/or the dynamics of real motion can be taken into consideration. 
For the analysis of modeling results we consider the estimates of inter-element 
control motions distribution in the support phase of jumping motion. The number of 
anthropomorphic model elements can change with respect to the level of AM 
adequacy to real human motions. 
 
RESULTS AND DISCUSSION: Further let us consider some results of running 
long jump simulation for the modeling of support and flying phases of the motion 
(Figure 1). Mass-inertia characteristics of 16-links model (Figure 2) are presented 
in Table 1, where M - mass, L -length, A-local position of center of mass, Jc - 
central moment of inertia assessed from the regression analysis formulas 
application for the sportsman with total mass Mc=90.2kg and height 1.85m. As 
follows from  

 
Figure 1. Kinematic scheme of the 16-element model  
support and free-fall phases of the running long jump. 



 

Figure 1, all phases of the motion were simulated as one motion due to application 
of constraint equations (2)-(4) types. For the flying phase we specified 
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. Different lengths of jumping (6m, 7.25m, 8.8m) were simulated due 
to the variation of duration of the stance phase and the amplitudes and shapes of 
support reaction force components. The initial and final positions and velocities 
distribution were also varied in order to provide support force realization. 
The trajectories of the swinging 
leg ankle and arms motions 
were preset with variation of 
positions of these joints at the 
end of the motion. The main 
difficulties of synthesis, besides 
the short period of observation 
(0.10 - 0.14sec), were 
associated with combination 
kinematic constraint equations 
(regulating limb motion) and 
force ones (ground reaction, 
moment of momentum). Not 
significant, at first glance, 
variation of constraints leads to 
the impossibility of motion 
realization and essentially non-
monotonous distribution of 
relative angular velocities. 

Table 1. 16-element model  
Mass-inertia characteristics. 

N M 
(kg) 

L 
(m) 

A 
(m) 

JC 
(kg*m2) 

 1 0.21 0.033 0.020 0.538E-3 
 2 1.00 0.167 0.100 0.538E-2 
 3 0.65 0.070 0.035 0.522E-2 
 4 3.25 0.333 0.166 0.522E-1 
 5 13.1 0.506 0.311 0.275E+0 
 6 10.3 0.150 0.106 0.764E-1 
 7 15.0 0.278 0.125 0.119E+0 
 8 14.2 0.251 0.124 0.954E-1 
 9 5.48 0.200 0.124 0.337E-1 
10 2.46 0.319 0.144 0.154E-1 
11 1.94 0.434 0.200 0.150E-1 
12 2.46 0.319 0.144 0.154E-1 
13 1.94 0.434 

During the process of motion 
synthesis it turned out that 
increase of the maximum value 
of the ground reaction force, 
along with decrease of the time 
period of the support phase, 
should be coupled with an 
increase in angular velocity of 
the swinging leg. By analyzing 
this fact we can conclude that 
the increase of swinging leg 
angular velocity leads to the 
increase of the inertia force 
pressing the model down and, 
therefore, allows us to increase 
the work of the support impulse. 

0.200 0.150E-1 
14 13.1 0.506 0.195 0.275E+0 
15 3.90 0.413 0.167 0.522E-1 
16 1.21 0.200 0.102 0.538E-2 

 

For the considered motion, the 
problem of control optimization 
during the support phase of the 
running jump for non-confining 
constraints on inter-element 
moments and constraints on  

 
Figure 2. Kinematic scheme of the  
16-element model support phase motion. 



 

kinematics was actually solved. It 
is essential to note that for the 
considered approach it is possible 
to obtain a continuous picture of 
inter-element moments behavior 
for increasing jump length. Some 
results of this kind of optimization 
are presented in Figures 3-5. The 
problem of energy loss 
assessment was solved by 
calculating the so-called 
biomechanical work (Abio), as a 
result of integration per time of 
generalized power absolute 
values sum. From all the figures it 
can be seen that the significant 
distinction is the swinging leg 
torque behavior (curve 14).  

 
Figure 3. Torques distribution (L=6.0m) 

 
CONCLUSIONS: The analysis of 
synthesized inter-element control 
moments values showed that the 
most significant influence on the 
value of the ground reaction and, 
therefore, on the pushing off 
velocity was the motion of the 
swinging nonsupport leg. 
Variation of the parameters 
values of ground reaction and 
resulting value of the kinetic 
moment allowed us to synthesize 
AM motion in the support phase 
so that it would ensure the 
desired trajectory of the AM 
motion in the flying phase of 
acrobatic motions. 

 
Figure 4. Torques distribution (L=7.25m) 

Research showed the necessity 
of employing non-stationary 
constraint equations in the 
synthesis of complex coordination 
human motions. Such an 
approach to motion control 
synthesis minimizes the number 
of parameters to be varied and 
gives a relatively stable solution with respect to small variations of AM structure. 

 
Figure 5. Torques distribution (L=8.8m) 
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