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INTRODUCTION: The flight distances of javelins are determined by the release 
parameters as well as by the forces that act on the javelin during flight. The former 
are under the control of the thrower, whereas the latter are not. The flight phase of 
the javelin has been under investigation by a number of researchers using 
engineering approaches to model the flight phase (e.g., Best, R.J., Bartlett, R.M. & 
Sawyer R.A., 1995; Hubbard, M., 1984). The objective is to find the optimal javelin 
release parameters for achieving a maximal flight distance. The measurement of 
release parameters is not very precise. Determining the wind influence during flight 
is difficult. Therefore the models of javelin flight are based on distorted data. 
Artificial neural networks (NNs; Haykin, S., 1994; Jain, A.K. & Mao, J., 1996) are a 
powerful information processing technology that allows us to construct an input-
output model of a problem by learning from examples. They are able to generalize, 
i.e. to produce reasonable outputs for inputs that have not been encountered 
during learning. NNs handle fuzzy, faulty and imprecise data well. Hence an 
alternative model to simulate flight distance can be designed and might offer 
advantages compared to the existing models. 
 
METHODS: Release parameters have been measured using three dimensional 
film and video analysis. Relevant parameters were determined: the angle of 
release α, the angle of attack β (seen from the side), the angle of side attack ϕ 
(seen from above), as well as the velocity of release v (Figure 1). The overall flight 
distance d was measured as the distance between the throwing line and the 
athlete’s hand at the point of release d0 plus the distance between the line and the 
point of touch down of the javelin. Other parameters such as javelin brand, release 
height h0, wind speed, etc., were not considered in the model. 

 
Figure 1: Release parameters 
So-called multi-layer-perceptron neural networks (MLPs; Jain, A.K. & Mao, J., 
1996) were used to construct a model with the release parameters as inputs and 
the overall distance as output (Figure ). MLPs are made up of 'neurons' that have a 



 

number of inputs and generate an output using nonlinearity. Neurons in a MLP can 
be divided into input, output and neurons that are neither of the two – so-called 
hidden neurons. The whole structure is grouped in layers of neurons, i.e., input 
layer, output layer and a number of hidden layers of neurons that can be seen as 
parallel processing units. The hidden layers enable the MLP to learn complex tasks 
by extracting properties from the input patterns. One neuron in a layer is connected 
with all neurons in the following layer using connections with weights. The input of 
a neuron consists of the outputs of the previous layer multiplied by each of the 
connection weights. During training the weight of the connections is adjusted by 
means of the error back-propagation algorithm (BP, Rummelhart, D.E., Hinton, 
G.E. & Williams R.J., 1986). BP can be seen as a gradient-descent method to find 
a good weight configuration by minimizing an error cost function by repeatedly 
presenting an input-output pattern starting from randomly distributed weights. Once 
a MLP is trained it has input data fed into it and generates an appropriate output 
(retrieve). An important issue is the ability to generalize: MLPs can be 'overtrained' 
using BP – this results in closely matching outputs for trained data patterns but 
poor outcome for untrained patterns. To avoid this the cross-validation technique 
(CV; Stone, M., 1974) is used to choose good weight configurations after 
completing the BP: The original set of training data was split into three groups: The 
training data set (TDS) with 37 data patterns and two CV-sets (CVS): the validation 
data set (VDS) with two patterns and a single pattern to evaluate the performance 
(EPS) of the MLP.  

 
Figure 2: Structure of the MLP. Inputs are the release parameters, outputs are the 
overall distances d when training and the simulated distance nnd when retrieving. 
 
RESULTS: We experimented with different MLP architectures using one or two 
hidden layers with between three and 30 neurons in each layer. A small setup that 
showed good results consisted of four input neurons (matching the number of input 
data), one output neuron (the total flight distance) and two hidden layers with three 
neurons each. The learning algorithm was stopped when the summed square error 
for all TDS dropped below 1m.  
The VDS was used to test the generalization performance of the MLP – the 
predicted distance nnd had to be in a range of ±5 percent difference to the original 
d in order for the generalization criterion to be matched. The final prediction quality 
was tested on the EPS. We used four main sets (see Table ) with each randomly 
chosen CVS from the 40 original data patterns, the remaining patterns made up of 
TDS. 



 

Table 1: The 4 main CV sets. The first number in the set defines the main set and 
the second is the number of the pattern used for defining different VDS setups. 

Set v [m/s] α [degrees] β [degrees] ϕ [degrees] Distance 
[m] 

1  - 1 28.0 34 35 14 83.34 
1  - 2 29.2 37 41 14 87.58 
1  - 3 24.0 35 38 8 59.50 
2  - 1 28.5 34 36 14 80.99 
2  - 2 23.9 34 39 8 58.10 
2  - 3 22.5 35.5 36 1 58.10 
3  - 1 26.4 25 30 14 68.86 
3  - 2 22.4 40 47 11 55.25 
3  - 3 24.5 31 35 4,5 66.16 
4  - 1 21.3 36 40 11 48.00 
4  - 2 22.6 40 49 12 54.80 
4  - 3 27.6 35 41 7 78.08 

 
For each of the four main sets (MS) we introduced three subsets with all variations 
of the three CVS data patterns for the VDS and the EPS (see Table 2 for MS one, 
MSs two, three and four are set up analogously). 

 
Table 2: Subset arrangement for training and performance evaluation of MS one. 

Subset VDS EPS 
1 1-2, 1-3 1-1 
2 1-1, 1-3 1-2 
3 1-1, 1-2 1-3 

Results for EPS with ten learning trials using this setup are displayed in Table .  
Table 3: Prediction result for all VD setups. 
EPS nnd 1 

[m] 
nnd 2 

[m] 
nnd 3 

[m] 
nnd 4 

[m] 
nnd 5 

[m] 
nnd 6 

[m] 
nnd 7 

[m] 
nnd 8 

[m] 
nnd 9 

[m] 
nnd 

10 [m] 
1-1 81,57 80,42 79,11 79,33 80,37 78,53 80,26 81,61 78,28 80,48 
1-2 82,51 84,60 89,99 84,40 84,50 89,21 88,89 83,58 90,22 83,10 
1-3 59,94 57,69 60,26 62,19 56,61 62,94 56,73 57,24 60,13 57,91 
2-1 80,67 80,87 80,65 80,67 79,86 80,08 80,56 80,02 80,68 79,17 
2-2 61,04 61,91 60,76 60,77 61,38 61,01 61,17 61,76 60,59 61,02 
2-3 56,29 56,01 56,05 56,15 55,65 56,29 56,07 56,24 55,92 55,67 
3-1 70,97 71,65 71,36 71,06 71,64 69,07 71,63 70,84 70,69 70,95 
3-2 54,25 54,81 55,37 54,94 54,60 54,59 55,60 55,33 55,26 54,58 
3-3 63,42 64,15 65,06 63,74 63,62 64,86 64,14 63,55 63,81 63,19 
4-1 50,83 50,73 50,77 50,71 50,80 50,91 51,04 49,03 50,72 49,07 
4-2 55,72 55,38 55,99 55,57 56,00 56,42 55,33 55,58 55,91 55,93 
4-3 76,18 76,44 76,50 75,94 76,21 77,74 76,21 78,87 76,55 76,41 

The mean of the simulated distances, standard deviation for ten trials, as well as 
the difference between d and the mean of the simulated distance in percent are 
shown in Table 4. 



 

Table 4: Mean of simulated distances (Mn. in m), standard deviation of Mn. (Stv. in 
m) and difference between simulated and real distance (Δ% in percent). 
EPS 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3 
Mn. 79,9 86,1 59,2 80,3 61,1 56,0 71,0 54,9 64,0 50,5 55,8 76,7 
Sdv.  1,16 3,08 2,26 0,53 0,43 0,23 0,76 0,44 0,61 0,75 0,33 0,90 
Δ% -4,0 -1,7 -0,6 -0,8 5,2 -3,6 3,1 -0,6 -3,3 5,1 1,8 -1,8 

 
The simulated flight distances ndd are accurate up to about five percent. Variation 
between different ndd is small and different learning trials therefore show similar 
results. 
 
CONCLUSIONS: We demonstrated that a neural network based approach is a 
suitable instrument for simulation of the flight distance, even though it uses only a 
small number of parameters. This tool can assist coaching and provides an 
alternative to other models. Results are encouragingly accurate, considering the 
number of training sets. To further improve the quality of prediction more data sets 
have to be used for training the MLPs. Future work will include recording more 
data, as well as studies on optimal javelin release parameters. 
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