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Scientific analysis and assessment of athletic performance are, in the
general case, notoriously difficult. In track and field events there are
at least clearly defined measures of performance (time expired, height
jumped, distances thrown, etc.). The coaches' job then becomes one of
assisting the athlete to improve his or her technique in order to achieve
the optimal performance possible within the constraints imposed by the
physical limitations of the athlete. In addition, the coach can suggest
exercises and other ways in which these physical limitations (e.g. muscle
strength) presently restricting performance can be raised, thus allowing
for possible improved performance in the future. In both cases, however,
it is the limits of performance which are central.

Shown in Fig. 1 are some distance records for the javelin throw over
the past seventy-five years. This history contains several prominent fea-
tures of interest; a relatively linear increase in distance during the first
three decades, a hiatus during World War II followed by a re-establishment
of pre-WW II performance at around 70 m, a dramatic increase during the
early-to-mid fifties due to the redesign of the javelin into its present
aerodynamic shape, and finally a somewhat slower but inexorable increase
over the last twenty five years. Examining Fig. 1 one is led to ask what
are the limitations on performance. Clearly these 1imits have not yet been
reached.

COMPARISON OF AERODYNAMICS OF JAVELIN, DISCUS AND SHOT

Of the throwing events (shot, hammer, discus, javelin) the javelin is
by far the most aerodynamic. Our intuition that this might be the case is
borne out by examining Table 1 in which the shot, discus, and javelin are
compared. The first and third rows show that there are large variations
in mass and density among the three objects. The large variations in mass
result in sizeable variations in achievable initial velocities when thrown
by humans (row 4). A more accurate measure of the "aerodynamicity" than
the density, however, is the ratio of the maximum possible aerodynamic
forces which might act during flight to the (constant) gravity forces.
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Figure 1. Javelin Olympic distances and world records.

Table 1. Some Physical Characteristics of Shot, Discus and Javelin

Shot Discus Javelin
mass kg 7.2 2.0 0.80
volume £ 0.70 0.90 1.25
density kg/2 10.3 2.22 0.64
typical velocity m/sec 15 25 30
maximum vacuum distance m 22 70 95
projected area m’ 0.0095 0.039 0.063
inverse mass kg_1 0.139 0.50 1.25
drag coefficient 0.47 1.0 1.2
"aerodynamicity" (Faero/Fgrav) 0.0072 0.68 4.49




where p = air density, v = velocity, A = maximum projected area, Cp =
drag coefficient, m = object mass, and g = acceleration of gravity.

Equation (1) can be decomposed in a different way as a product of
five factors
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which measure, respectively, the contributions of air density, mass speci-
fic initial kinetic energy, size, inverse mass, and shape. The last four
of these are shown in rows 5-8 of Table 1. In each of these four factors
the javelin is greater than the discus and the discus is greater than the
shot.

The final row of Table 1 shows that the javelin, according to the
measure of Equation (2), 1is roughly five times as aerodynamic as the
discus, which is itself nearly one hundred times as aerodynamic as the
shot. The trajectory of the shot may therefore be modeled relatively
accurately as a purely ballistic one, while aerodynamic forces must be
included in any model for the trajectories of the javelin or "discus.
Further, for asymmetric shapes like the javelin and discus, aerodynamic
forces are a function of not only the magnitude of the relative wind speed
but also the attitude of the body relative to the relative wind direction.
Thus, initial attitudes and rotations of the body during flight must also
be considered.

The general implications of Table 1 are the following. Range of the
shot is not appreciably limited by drag; (Soong (1982) has calculated that
drag decreases the range by considerably less than 1 percent). While this
is not the case for the discus, its asymmetric shape makes it possible to
compensate for the decreases in range due to drag by analogous increases in
range due to 1ift generated by appropriate discus attitudes during flight.
Indeed, it has also been shown by Soong (1976) that these two factors may
nearly cancel, resulting in a range in air nearly equal to that in a
vacuum. The even more aerodynamic characteristics of the javelin make it
possible for 1ift to substantially outweigh drag and for the javelin to be
thrown roughly 18 percent further in air than in a vacuum (Hubbard, 1984).

SIMULATION: RANGE AS A FUNCTION OF INITIAL CONDITIONS

For all the throws, the eventual range depends only (and uniquely) on
conditions (position, velocity, attitude, and angular velocity) of the
object when released by the thrower. As the "aerodynamicity" increases,
however, so does the sensitivity of the eventual range to the above
release conditions. Thus, in the case of the javelin especially, it would
appear to be of great benefit to focus on the dynamics in flight in order
to determine the effects of the initial conditions on range.
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Two previous studies of javelin trajectory dynamics (Soong (1975);
Red and Zogaib, (1977)) have relied on computer simulation of trajectory
equations. These made possible the prediction of dynamic behavior in
flight as well as eventual range, entry angle, and time of flight. Unfor-
tunately, the results of these studies were somewhat misleading because:
1) they used theoretical expressions for aerodynamic forces and moments
which only poorly approximate the actual forces and moments which act on
the javelin in flight, and 2) they did not exhaustively investigate the
space of initial conditions in order to determine exactly the set of
optimal release conditions.

Recently a similar computer simulation approach has been developed
(Hubbard and Rust, 1984a, 1984b; Hubbard, 1984) which incorporates experi-
mentally measured aerodynamic forces and moments from previous javelin wind
tunnel tests by Terauds (1972, 1974). From many such simulations it is
possible to predict optimum release conditions (initial flight path angle
and javelin attitude) as well as sensitivities to perturbations from these
optimum conditions and to various environmental conditions (wind, density
variations, etc.). In the remainder of the paper we summarize the approach
taken in Hubbard and Rust (1984b) and in Hubbard (1984), present for the
first time some new vibration free optimal solutions, and discuss how
results such as these can be used by throwers and coaches.

In Hubbard and Rust (1984b), the equations of motion for the javelin
trajectory are derived from first principles. A particular example
trajectory, typical of a good throw, is discussed and the motion of the
javelin in flight, obtained by numerically integrating the differential
equations, is analyzed. In the companion paper (Hubbard 1984) it was
shown, using many such simulations, that when the javelin is thrown in a
vertical plane a set of five initial conditions at release determine
completely the trajectory and hence the eventual range. This set of
initial conditions includes:

1. vy - velocity of the center of mass (c.m.)

2. zg - height of the c.m.

3. 6o - angle of the velocity vector from horizontal

4. a9 - angle of attack (angle between the javelin axis of symmetry
and the velocity vector)

5. wg - pitching angular velocity.

These variables are shown in Fig. 2. The subscript o above denotes "at
time t = 0." Although it is always desirable to have vy and 2o as large as
possible, there are unique optimal values for the remaining three initial
conditions 65, a9, wo which maximize the range. A series of
successively less constrained optimum solutions is defined (given v, and
20), the last of which is the global optimum javelin trajectory for the
remaining three initial conditions.



Figure 2, Five initial conditions (vg, Zg, g, @g, wg) determine subsequent

trajectory. Total javelin velocity vgo is vectorial sum of run-up velocity vy

and throw velocity vi. No transverse vibrations are induced when s = 0.

This optimal solution was found using a three-dimensional Newton-
Raphson iterative search. Unfortunately, any attempt to portray or display
the behavior of the range in a neighborhood of the optimum is severely
limited because of the three-dimensional nature of the space. This may be
circumvented, for example, by fixing one of the three variables ¢,
ag, wg and plotting range contours in the remaining two space.

VIBRATION FREE TRAJECTORIES

Another more natural method to decrease the problem dimensionality,
however, is to recognize that not all near optimal solutions are equally
desirable. Indeed, there is a two-dimensional subspace of the ¢g, ag,
wg three space which is much more preferable from the point of view of
minimizing thrower induced vibrations (which can be a severe problem in
actual practice). That this is the case may be seen from the following
arguments illustrated in Fig. 2.

Because the thrower has a non-zero run-up velocity vy, an impulse
mvt (at an angle B to the horizontal) must be applied to the javelin
during the throw in order that a resultant initial velocity vq (at. angle
$o) will result. Thus, an impulse of magnitude mvisin ¢ 1is imparted
perpendicular to the javelin axis where the impulse misalignment angle &
can be shown (Hubbard, 1984) to be given by
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When & # 0, this impulse causes transverse vibrations. If the thrower, how-
ever, chooses ag to make & = 0, i.e. throws at an initial angle of attack
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[o] 0,

then the subsequent trajectory will be vibration free. Figure 3 shows the
dependence of the vibration free initial angle of attack on ¢5. We
emphasize that, although the initial angle of attack «g 1is non-zero,
there would be no thrower induced vibrations in this case since all the
throwi?g impulse s imparted along the javelin axis (or "through the
point").

Having thus reduced the dimensionality of the initial condition space
to two by choosing ag according to (4), we may then present contours of
constant range in the ¢5, wg two space. Shown in Fig. 4 are such
contours of constant range for the Held-90 javelin assuming that «f
satisfies (4) and that z5=2m, vp=6m/s, and vg = 30.48 - 0.127
(o - 35) m/s. This variation of initial velocity vg with flight path

LB ! I I ! | | I
0} -
8 -
s-— —

@ (deg)

-
1
i .

10 20 30 A0 50
% (deg)

Figure 3. Initial angle of attack which minimizes thrower induced vibrations.
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Figure 4, Vibrationless range contours for Held-90 javelin vs pg and wg

(contour interval = 5 m). Hashed region corresponds to tail first landings.

angle ¢p is an attempt, first suggested by Red and Zogaib (1977), to
model their experimentally observed fact that it 1is possible to throw
faster at smaller initial flight path angles, #o. Also shown in Fig. 4
are two contours of zero entry angle, between which (in the hashed region)
the javelin strikes the ground tail first, thus resulting in an illegal
(unmeasurable) throw. Thus, the optimal deterministic initial conditions
0%, w§ are those which maximize the range outside this region (i.e. subject
to the entry angle constraint, 6¢ < 0). From Fig. 4, these optimal initial
conditions can be seen to be very near the point (6%, o}, w¥) = (31 deg,
6.8 deg, -10.4 deg/s) and to result in a range of approximately 114.8 m.
The optimal point is denoted by @ in Fig. 4.

Fig. 5 shows, in the same ¢y, wg space, contours of constant time
of flight, tf. As is clear from the figure, the time of flight can vary
rather dramatically in the range 1.98 < tf < 5.73 sec, the optimum time
of flight (tf - 5,26 sec) occurring at the optimal values of 6% and u¥
above which maximize the range.
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Figure 5. Time of flight contours (in seconds) for vibration free throw.

PROBABILISTIC INTERPRETATION OF INITIAL CONDITIONS

Probably the main additional information conveyed by Fig. 4 (beyond
the set of theoretically optimal initial conditions ¢%, ug, mg) is the
extremely sensitive nature of the solution. The angu]ar velocities wg
in question are very small (being roughly of the order of magnitude of the
second hand on a clock, 6 deg/sec). It is therefore unlikely that wy may
be controlled by the thrower with much precision.

Indeed, a more realistic description of the "choice" of the initial
conditions by the thrower may be a statistical or probabilistic one. That
is, the thrower may be able to choose mean values §, w for the variables
$o, wg, with the actual values being randomly determined, perhaos
normally distributed about these means, with variances o 2’ and o
which are inversely proportional to the degree of control which the thrower
has over each variable. For example, assuming that ay is determined by
(4) above, and assuming statistical independence of @y and wg, the
joint probability density function of the particular initial condition
60, wo might be approximated as jointly Gaussian,




Figure 6. Joint Gaussian probability density function for $y, wg when consi-
dered as random variables. The most probable value for #g, wg is the mean P, w.
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where $, w are the mean values and og, o, are the standard deviations
of ¢p and wg. Figure 6 shows the nature of the p(dg, wg) surface.
Reasonable estimates can be made for og. Based on experimental data
(Miller and Munro, 1983), it appears that o4 is roughly of the order of
1-2 deg., Estimation of o, is more problematic, however, since it is
extremely difficult to measure such small angular velocities accurately.
No reports in the open literature are known which contain such measurements
and on which estimates of o, might be based.

CHOICE OF THE OPTIMAL AIM POINT ¢*, w*

In any case, such inexact control of initial conditions turns the
problem for the thrower into one of stochastic optimization. Namely, he
or she must choose ¢, w (which might be termed an "aim point") to maximize
some payoff function of the range. One possibility for such a performance
index would be the expected value of the range. Thus, the thrower might
choose ¢*, w* which maximizes the expected range

I p(¢°l mO) R(¢0’ Uo) e“o’ No) déO dwo (6)



where p(#$g, wp) is given by (5), R(g, wp) is the range function whose con-
tours are shown in Fig. 4 and which must be evaluated by simulation, and
e(6g, wg) is either one or zero depending on whether the final entry
angle constraint is satisfied or not. Thus, in this scheme illegal throws
are not weighted at all.

The point here is that, when inexact control exists, it is probably
better to aim not for the deterministic optimum which lies on the zero
entry angle contour (point @ in Fig. 4) but instead for a point somewhat
away from the deterministic optimum (point A in Fig. 4). This is because,
due to uncontrollable stochastic variations in the initial conditions, the
former alternative will lead to roughly one half of all throws being
illegal because they strike tail first. Obviously, the above ideas
generalize to the three degree-of-freedom case where the thrower is free
to choose all three initial conditions, #g, ag, wg-

INTERPRETATION AND USE OF RESULTS

Although most of the initial sections have been concerned with the
description of a specific model and optimization procedure, one of the
main purposes of this paper is to discuss how these results can be used by
coaches and participants. The most obvious use of the information in Fig.
4 is for the calculation of a best aim point $*, w* as discussed above.

_The mathematical maximization of (6) by choosing the best aim point
¥*, @* is a rather formidable set of calculations, however. Instead, it
should probably be possible simply to use the sensitivity information
conveyed in the contour spacing in Fig. 4 to make a reasonable guess for
the location of the best aim point without making the lengthy calculations.
The thrower would then attempt to match (or nearly match) his or her mean
initial conditions in a throw to the aim point.

The use of the aim point concept will be most useful when there is
the provision for more or less immediate feedback to the thrower regarding
performance. High speed video tape and/or inertial instrumentation of the
javelin, perhaps even in concert, are two possible ways to achieve this
feedback, which is essential if the thrower is to be able to modify perfor-
mance iteratively and home in on the best aim point. The feasibility of
such techniques is presently being studied.

Repeated solution of the problem (namely, generation of Fig. 4) for
different nominal velocities vpom in vg = vpom * 0.127 (¢ - 35) can
answer questions concerning how the optimal initial conditions might change
as a thrower's velocity capability increases. Such a study is included in
Hubbard (1984) and is a specific example of the calculation of the
sensitivity of the 1limits of performance to thrower physical limitations
mentioned in the opening paragraph above.

Finally, the results and approaches outlined herein may be used in
the study and design of new javelins. As throwers' capabilities increase,
gradual modifications in javelin design will be necessary. Using simula-
tion, it may be possible to determine the optimum shape of the pitching




moment profile, which is apparently the main aerodynamic change which
results when the javelin shape is perturbed slightly.

CONCLUSIONS

Numerical simulation of the differential equations describing javelin
flight has been discussed. Many such simulations can map the initial
condition space into range and can be used as a basis for determination of
the optimal way to throw a javelin with given aerodynamic characteristics.
Vibration free trajectories can be assured by choosing the initial angle of
attack so that the impulse misalignment angle is made zero. Deterministic
range contours in the initial condition space may be used for the computa-
tion of best aim points if reliable and accurate estimates can be made of
the stochastic variability of the thrower for each initial condition.
Feedback to the throwers of their performance will be necessary for them
to be able to converge to aim points. Computer simulation also appears to
hold promise in the design process for javelins of the future.
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