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Computer simulation of figure skating jumps can identify opportunities for
improving skater performance by utilizing the kinematic description of jumping
dynamics derived from cinematographic analysis as the starting point for
computer-based experiments on a simulated skater. The freedom to explore
alternatives in body position, speed, thrust and timing with the computer
simulation will provide the coach with a tool for systematic assessments of
jumping technique. In addition, the ability to use the computer to examine the
very rapid movements during take-off will help both the skater and the coach to
conceptualize the components of movements that may have been previously unclear
or even undefined. Consequent benefits would include:

1. Clear description of proper jumping techniques.

2. Opportunities for achieving more efficient jumps--higher, longer, more
revolutions--with concomittant freedom to increase concentration on
artistic dimensions.

3. Reduced risk of injury.

4, Determinations of the suitability of specific jumps for particular body
types, flexibility, strength and intellectual capacity.

The teaching of figure skating that would evolve from a more complete
understanding of jumping dynamics could be characterized by more appropriate
progression in the development of the skater. Teaching of jumps could be
precise with little need for relearning. Possibilities for injury due to high
stress levels could be pinpointed and adjustrents in technique or improvements
in boot design could be made to limit these stresses.
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This paper describes the initial phase in the development of a
computer-based process for the dynamic simulation of figure skating jumps. High
speed cinematography is used to determine the kinematic data for each limb--e.g.
velocity and acceleration histories, initial positions--necessary for solving
the equations of motion by explicit numerical integration. As the computer
simulation proceeds a computer graphic animation is displayed. Because the
position of each body segment is calculated at each time step, the influence on
jump trajectory due to changes in body position as well as variations in the
timing and in the magnitude of the forces exerted by the skater can be examined
by comparing the animated trajectories or plots of kinematic data, joint forces
and the torques acting on each body segment.

As indicated in the next section, the numerical method for predicting the
movements of the simulated skater is particularly simple. Each body segment is
considered as a distinct element during the dynamic analysis with coupling to
adjoining limbs accounted for by including the requisite joint forces, (see
references Cundall (1983) and Cundall (1978)). While maintaining sufficient
accuracy for predicting complex jumping dynamics, this model is easy to
understand and use.

NUMERICAL MODEL

Many previous studies have successfully represented the human body as a set of
connected rigid segments, e.g. Hanavan (1964), Huston et al (1971), Huston et al
(1976), Hatze (1977) and Aleskinsky (1978). To introduce the modeling approach
used in the simulation of figure skating jumps in three spatial discussions, a
simplified six-segmented hominoid representative of two-dimensional symmetric
motions in the sagittal plane will be considered. Corresponding bilateral
segments can be considered to move as one segment. As pictured in Fig. 1, the
respective body segments are:

1. feet

2. lower legs

3. upper legs

4, trunk (including head)
5. upper arms, and

6. lower arms and hands.

These connected segments are considered as a dynamic system in which the energy
is transmitted by mechanical forces.

A simple dynamic system composed of three connected masses is diagrammed in
Fig. 2. In this example the three masses are constrained to move in one
dimension; they are connected to each other and to a rigid boundary by springs
and dashpots, and mass 3 is driven by an external force F(t). The analysis of
such a system is straightforward.

The biomechanical model used in the development of the computer simulations
is analogous to the dynamic system indicated by Fig. 2. In the biomechanical
model each of the body segments are connected to adjoining segments by springs

g



SN N Y NN

N\

\ 5. Upper Arms
4. Trunk-Head
6. Lower Arms

3. Upper Legs

2. Lower Legs

. F
\\c=55251 1. Feet

A

’
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and dashpots. Forces dare transmitted from segment to segment through the
springs; rapid oscillations characteristic of a spring-mass system but not of a
human body, are damped by the dashpots. The hominoid sketched in Fig. 1 is,
however, free to move in two dimensions; therefore analysis of both linear and
angular accelerations must be included. Another distinct difference between the
two systems is that the force F(t) driving the mechanical system in Fig. 2 is
external to the system while the active elements are internal for the
biomechanical model. The equivalent center of mass torgues that drive the
hominoid are representations of the torques developed by the muscles.

Major goals of the computer modeling work have been (1) to develop a method
for the simulation of complex three dimensional jumps that accurately predicts
motions based on the equations of dynamics and (2) to utilize as simple an
approach as possible so that the method can be widely understood and easily
used. The distinct element method facilitates these goals because at each time
increment the algorithms examine each body segment in turn with easily
calculated joint forces linking the segments. By considering only the equations
of motion for one segment at a time, the formulation is very concise. The
similarity of the calculations for each segment lend themselves to efficient
loop structures at each time step as well as for subsequent times. In the
following paragraphs a two dimensional segment is analyzed to provide some
indication of the method. Analysis in three dimensions is made slightly more
complicated, and difficult to draw, by either time varying moments of inertia or

accelerating coordinate systems.

Equations of Motion for Each Segment

Figure 3 is a schematic of the lower legs (segment 2) indicating the forces
and torques acting on this representative body segment. The joint forces Fyp
and Fpp act at each end of this limb. The equivalent muscle torque M2 and the
weight of the 1imb my*g are shown acting through the center of mass. By defining
the location of the ankle joint with respect to the center of mass of the lower
leg by the radius vector ra2, the location of the knee joint by the radius
vector rp2, the moment of inertia of the lower leg about its center of mass as
Io, the position of the center of mass of the lower leg relative to a stationary
coordinate system by pp, and the angular orientation of the limb as measured
counter-clockwise from the positive x-axis by 8y, the equations of motion for
this segment may be written as

-

o -> -> N
Mz * P2 = Fa2 + Fp2 - mp*g (1
>
.. > -> - > >
I * 8 = rap X Fa2 + rp2 X Fpz + Mp (2)
> > 2
e 2> e d“e
where P2 = —9—% and 92 = 22
dt dt

Beginning with a completely defined initial configuration, the state of the
hominoid a small increment in time later is predicted by first computing the
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joint forces and then using them in the integration of equations 1 and 2. The
method for solving these equations so that the segments remain coupled at the
joints while transmitting the forces associated with the particular motion under
study is outlined in the following discussion.

Limb Coupling

In this model, joints are defined as the contact puints or connections,
between body segments. If one body segment is moved, due to an interaction with
an external object or the generation of an internal torque simulating a muscle
contraction, then a force may be transmitted through the joints to adjacent body
segments thereby displacing them. A schematic of the simulated condition at the
joint between the lower legs and the feet is shown in Fig. 4. To provide a
representation of the method for modeling the coupling between segments, an
ideal mechanical spring-dashpot pair is inserted in each joint. With no attempt
at physiological rigor, it is reasonable to consider these elements as a first
approximation to the complex biological system of bones, ligaments, tendons and
muscles. Connection of segments by the spring-dashpot pairs facilitates the
calculation of the approximate joint torces and associated segment torques
because movement of one body segment relative to the adjoining segment results
in well-defined changes in spring tension which are readily determined.
Oscillations characteristic of a spring-mass mechanical system but inappropriate
to this biomechanical model are rapidly attenuated by the damping force due to

the dashpot.

Consider the partial view of a sample situation shown schematically in
Fig. 5. Initially the simulated feet and lower legs are stationary, Fig. 5a.
At time t, assume that torques equivalent to the effect of additional muscle
contractions M} and My begin to twist the two limbs, Fig. 5b. The spring-damper
system is compressed and generates equal and opposite forces Fp) and Fy2 at the
ankle joint which push on the feet and lower legs, respectively. The forces
will accelerate the limbs to 1ift the lower legs up while increasing the
downward force pressing the feet to the floor, Fig. 5c.

Evaluation of the joint forces is accomplished by determining the force in
the spring and the damping force due to the dashpot. The change in the spring
force is due to the change in separation 812 (t + At) between the end of the
lower leg segment (point a2) and the end of the feet segment (point bl):

- >
dFspring (t + at) = k12 * 612 (t + at) (3)

The change in separation §12 (t + at) is determined by multiplying the relative
velocity between segment end points as viewed from point a2

U1z (8) = Gpg (1) - Tap () (4)
by the time increment At.

812 (t + at) =Ty (t) * At (5)
This incremental change in spring force dFs ring corresponding to movements

occurring between time t and time t + At must be added to the spring force that
existed at time t
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Fspring (t + at) = Fspping (t) + dFgpring. (6)

The damping force is the damping constant assumed for that joint multiplied by
the relative velocity

Fdamping (t +at) =b12 * 612 (t) (7)
Summing these forces

?bl (t +at) = Fspring (t +at) + Fdamping (t + at) (8)
and because the spring and the dashpot are assumed weightless

;az(t +4t) = -;bl(t +at) (9)

To compute these forces one can begin by determining the segment end point
velocities from the kinematic relationships

- - - >
Uaz () = Ucmy () + W2 (1) X raz (10)
e - ->
Up1t (t) = Ucmy + W1 X ral (11)
> - 7
where Wp = 8, and Wp = 8, . Then after calculating the relative velocity

U12 and displacement 612, equations 8 and 9 give the joint forces which are
used to solve equations 1 and 2 to obtain the updated linear and angular
velocities and the predicted linear and angular displacements of the segments.

APPLICATION TO FIGURE SKATING

This computer simulation system is being developed to utilize initial
kinematic descriptions of figure skating jumps obtained from cinematographic
analysis as the starting point for subsequent computer-based experiments to
optimize jumping technique. Once the computer model has processed the initial
data, predicted changes in jump trajectory due to the effect of specific
adjustments in such variables as initial velocity, body position, thrust or
timing can be displayed for the investigator as an animation of the resultant
motion or as detailed plots of position. Complete kinematic data as well as
force and torque histories may also be retrieved.

General discussion of figure skating jumps includes the skater beginning to
maneuver by skating in the direction of the anticipated movement, jumping into
the air, executing a series of rotations (0 to four), and landing. Every skater
and coach is well versed in the importance of maximizing time spent in the air.
This requires a large angle of take-off, i.e. nearly vertical, and a force
sufficient to project that skater's center of mass as high as possible. These
simple terms require a more practical explanation with detail about how to
achieve the desired results when translated by the coach or skater for a
specific jump.



With a given skater in mind the height of the center of gravity on take-off
is narrowly defined depending upon body position; however, the vertical
component of velocity at take-off is influenced by several factors. The
velocity of the total body entering the jump combined with the vertical impulse
produced during the take-off phase determine the vertical velocity imparted to
the body. This impulse involves the forces produced by the muscle action of the
thigh, leg and foot, and to some extent the part to whole transfer of momentum
of the arms and free leg. Obviously the timing of these take-off actions is
critical. Focus for both execution by the skater and error correction by the
coach should be directed toward

. the horizontal velocity entering the jump,
. the position of the body on take-off,

the time required for execution of the take-off,

the position of the free leg relative to the vertical axis of the body,
the point at which the free leg and arms stop their movement thus
transferring momentum to the total body mass, and

6. the hip position throughout the movement.

1
2
3
4
5

It is difficult for the coach to observe, and certainly for the skater to
focus upon, the factors listed in the preceding paragraph during any one
particular jump because of the number of parameters and because of the short
time period in which they occur. Systematic variation by a skater of any
particular element of the jump, to see the effect of the changes, is nearly
impossible because of the patterns of movement that the body has learned during
years of training. It would be very helpful if the skater could develop sound
technique from the beginning. Coupling high-speed cinematography with the
dynamic computer model will provide a computer simulation amenable to systematic
parameter variations thereby providing additional opportunities to examine and
perfect a skill through a better understanding of what does or might occur.

Thus it is possible for the coach and student to observe a world class skater
executing a complex jump and focus on key body positions as well as the temporal
factors of the jump. It is even possible to vary components of the jump, e.g.
the position of the free-leg relative to the vertical axis of the body on
take-off, and visualize the effect this adjustment would have on performance.
But one is not limited to studying advanced techniques; the whole sequence of
training can be analyzed from the simplest to the most complex. Biomechanically
sound progressions in skill development can be discerned so that skaters can
advance efficiently.

Systematic variation of the different components of particular jumps
accomplished with the computer simulated skater would provide a clear
understanding of the components which make significant alterations in
performance as opposed to components which have a minor impact. This could be
accomplished away from the ice. A coach and/or an advanced skater could sit
before the computer screen and explore the effect of a variety of changes in
techniques to delineate the changes worth trying during practice.

Finally, it is possible to visually contrast different skaters both through
an examination of differences in position, velocity and timing and through an
exploration of the different forces that are exerted. For example, world class
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skaters could be compared with national contenders to provide insights into the
subtle differences. Feedback could make the national level skater a stronger

contender.
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