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The purpose of this study was to compare the goodness of fit of two functions representing 
horizontal velocity of a human body subject to passive drag. Hyperbolic and exponential 
functions were fitted to the horizontal velocity data of three glides following push-off from the 
wall of five swimmers. Measures of goodness of fit included root mean square errors 
(RMSE), and the coefficient of determination (R2). The hyperbolic function provided a 
better fit to the actual values of velocity, provided a closer match to the initial velocity, and 
predicted better the velocities beyond the fitted interval than the exponential function. It was 
concluded that for the swimmers and range of glide velocities tested, drag was closer to 
being proportional to the square of velocity than a linear function of velocity. 
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INTRODUCTION: Passive glide plays an important role in swimming events specially following 
starts and turns and in some transitional phases during butterfly and breaststroke (Vorontsov 
and Rumyantsev, 2000). The average glide speed is highly correlated with the start time (Hay 
and Guimares, 1983). Mason and Cossor, (2001) found that the most significant aspect of the 
turns to be the underwater phase. Although the initial push-off velocity is one of the 
determining factors of glide performance, minimising drag could produce better results than 
merely increasing effort during push-off, because it does not increase the metabolic cost (Lyttle, 
et. al. 1998). 
Passive drag forces have been measured directly during towing. However, these methods may 
affect the natural pace and posture of the swimmer. Additionally, these methods do not take into 
account the effect of unsteady motion and added mass due to the deceleration of a swimmer 
during actual glide performances. By integrating the equation of motion for a passive swimmer 
we take advantage of working on kinematic data while eliminating the problems associated with 
direct methods of drag measurement. 
Using passive glide kinematics for finding hydrodynamic drag coefficient has been established 
by Karpovich and Pestrikov (1939), developed by Klauck and Daniel (1976), and adapted by 
Takahashi et al. (1982) for the underwater passive glide following static starts from the wall. The 
'kinematic method' is usually based on the conventional assumption of quadratic 
proportionality between drag force and velocity (Amar, 1920, Karpovich, 1933,Counsilman, 
1955 and Jiskoot and Clarys, 1975). A quadratic relationship between drag force and velocity 
yields a hyperbolic velocity-time function for a passively gliding swimmer. Recently, researchers 
have questioned the validity of the assumption of a quadratic relationship between drag force 
and velocity (Lyttle, et. al. 1998). Using their towing device and examining different constant 
speeds and depths the researchers found a linear relationship between velocity and drag force 
in the tested velocity domain (1.6 to 3.1 m/s). A linear relationship between drag force and 
velocity yields an exponential velocity-time function for a passively gliding swimmer. Sanders 
and Byatt-Smith (2001) used an exponential function to find a least-squares fit to the 
velocity-time data of a passively gliding swimmer to predict the time when a swimmer shou,ld 
initiate the kick following the glide in starts and turns. However, while the technique of fitting a 
function to velocity-time data to predict the most appropriate time to commence kicking is 
potentially useful, it has yet to be established whether a hyperbolic or exponential function 
provides a better fit. Further, establishment of whether drag is a linear or quadratic function of 
velocity may provide insights into the hydrodynamic behaviour of a passively gliding human 
body in the range of speeds of competitive swimmers during the glide phase of starts and turns. 
Thus, the purpose of this study was to compare the goodness of fit of exponential (drag force 
proportional to velocity) and hyperbolic (drag force proportional to the square of velocity) 
values for horizontal velocity-time data following push-off from the wall. 
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METHOD: Three female and two male club level competitive swimmers preformed three trials 
holding a passive glide following a push-off from the wall. The swimmers were at a depth of .5 
m and directly above a scale line strained horizontally at a depth of 1m. Balls 5cm in diameter 
surrounding the cable were spaced exactly 1m apart to allow subsequent calibration. A 
stationary underwater camera, 12m from the plane of motion of the swimmer and with its axis 
perpendicular to the swimmer's glide path, recorded motion of the swimmer at 25 fields per 
second. APAS software was used to digitize the scale line reference markers and hip marker of 
the swimmer. The hip of the swimmer was regarded as representative of the whole body motion 
given that the posture during the glide was held constant. Raw data from the hip marker were 
filtered using a 4th order Butterworth filter with a cutoff frequency of 6Hz. The horizonlal 
coordinate data of the hip were then differentiated to obtain horizontal velocity. 

Based on Newton's Second Law of Motion the equation of motion of the swimmer can be 
wri.tten as: 

pet) - D(t) = M. dv
 
d!
 

Where pet) is the propulsive force, D(t) is the resistive force, vet) is the velocity of the swimmer
 
and M represents the total mass of the swimmer plus the added mass of water.
 
Given that propulsive force is zero during a passive glide, we have:
 

dv
PU) =0 then: - D(t) = M.­

dl
 

Quadratic Relation:
 
On the basis of a traditional quadratic relation between drag and velocity we have:
 

2 ' d"D(I)=C2 .1' then: -Cof =M.­
- df 

Where C2 is the drag coefficient in Kg/m. Solving this differential equation and taking into 
account the initial velocity condition (Vm: maximum velocity at release), we have: 

f-C2.\,2=fM.dv and v(O)=V
df 

oo 

Then we have the velocity as: 

1'(1)=--­
C I 
-.1..../ + 
M ~" 

Where C2 / M is the integrated drag coefficient (C2) in m-I. 

Unear Relation:
 
On the basis of a linear relation between drag and velocity we have:
 

dl'
D(I) = ('1'1' then: - c l .1' = M.­

df
 

Cl is the drag coefficient in Kg/sec. Solving this differential equation and taking in to account the 
initial velocity condition(Vm : maximum velocity at release),we have: 



Table 1 Comparison of Different Fit Parameters for Exponential and Hyperbolic Fits. 

Figure 1: Actual values and fitled function for one of the trials for subject CHR. 
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Then we have the velocity as: 

Fit Exponential Fit Hyperbolic Fit ..,......_.._--
Subject Vm(m/s) Cl (Hz) R­ RMSE Vm(m/s) Cz (m") R- RMSE 

CAR 2.321 0.381 0.907 0.116 2.523 0.252 0.930 0.101 
CHR 2.391 0464 0.948 0.094 2.548 0.292 0.966 0.073 
STE 2248 0401 0.949 0.073 2.348 0.246 0.971 0.053 
JOA 2.532 0382 0853 0.151 2.372 0267 0.901 0.121 
KEL 2309 0371 0910 0.127 2496 0250 0.949 0.096 

Avera~e 2360 0400 0.913 0.112 2.458 0.261 0.943 0.089 
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Where C1 / M is the integrated drag coefficient (Cl) in Hz. 
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RESULTS: Table1 shows the average values for each subject, maximum velocity estimated 
(Vm), integrated drag coefficient (C), coefficient of determination (R2) and sum of the Root 
Mean Squared of Errors (RMSE) for the exponential and hyperbolic least-squares fits. Mean R2 
of all subjects was 0.03 greater for the hyperbolic function than for the exponential function. 
Mean RMSEs were 0.089 for the hyperbolic function and 0.112 for the exponential function. 

MATLAB® curve-fitting toolbox was used to fit the actual velocity-time data with the parametric 
hyperbolic and exponential functions using a least squares fit. 

Figure 1 is an example of actual velocity values and fitted horizontal velocity values plotted 
against time. 

CONCLUSION: The mean R2 and mean RMSEs of all subjects indicated that the fit was better 
for the hyperbolic function than the exponential function. From the graphs it was evident that 
the hyperbolic function provided a better estimate of the initial velocity (Vm). Also, although the 
differences between the values for R2 were not large, the graphs indicated that the hyperbolic 
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fit could predict the actual velocity values beyond the range of fitted values.
 
These results supported the conventional assumption of quadratic proportionality between drag
 
force and velocity.
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