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INTRODUCTION: It is usual to reconstruct three-dimensional (3-D) data from two 
or more sets of two-dimensional (2-D) data before smoothing it. Unfortunately most 
smoothing techniques are essentially low-pass filters (Butterworth, quintic spline 
etc.) and thus remove all the high frequency components. Although the results may 
be aesthetically pleasing the filters provide no implicit indication that the smoothed 
data is more accurate than the original data and they also remove any 
discontinuities (Figure 1) along with the noise. A discontinuity would result from the 
application of an impulse to a point and is related to fundamental actions such as 
foot strike. Given a typical video sampling frequency of 50 Hz there is also a very 
high probability that the impulse would not be explicitly recorded (Figure 2), 
requiring additional computation to estimate when and where it did actually occur. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
To reconstruct 3-D data one usually has more equations than unknowns - the 
system is over-determined and can be solved by least squares estimation. In a 
perfect reconstruction the condition of coplanarity would be satisfied and there 
would be no residual error. Smoothing the data prior to reconstruction should 
improve its quality and this would be confirmed by a lower residual error. An 
increasing residual error would imply that the 2-D data are diverging and the 
smoothing is making the data unreliable. Processing the data in both a forward and 
backward direction enables the discontinuity to be detected and extrapolating the 
two resultant data sets until they intersect should be a good estimate of the original 
point of discontinuity. If the same discontinuity could be located independently on 
more than one set of 2-D data then the discontinuities could be used to measure 
the phase difference between the cameras. This bidirectional filtering of the data 
can be achieved by a recursive filter. 
 
 

Figure 1. Low-pass Filter,
discontinuity is smoothed out. 

Figure 2. Impulse not explicitly 
recorded. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

METHOD: A Kalman filter estimates the value of a variable, Sn
^

+1 , at time (n+1) by 

combining the value predicted from a previous estimate Sn
^

, with the current 
measured value, Xn+1 : 

Sn
^

+1  = (1 - K) Sn
^

 + K Xn+1 

where K is a constant. If the previous estimates were considered good then Sn
^

 
would be the favoured term, making K closer to zero. Conversely, if previous 
predictions were poor then more notice would be taken of the measured value Xn+1  
and K would approach unity. Assuming the signal to be in a steady state prior to 
the discontinuity, the value of K would converge to a constant value. At a 
discontinuity the predicted value would diverge from the measured value (Figure 
4), causing K to increase. K will only decrease when the signal has returned to a 
state condition. The variation of K is dependent on both the noise of the 
measurement and the extent of the discontinuity. If the filter were applied in the 
reverse direction the same effect would happen, but in the opposite direction, thus 
confirming the existence of a discontinuity. 
 
Having located the discontinuity, the original data can be treated as two separate 
sets of data which are then extrapolated using their respective prediction models to 

find their point of intersection. Prediction of the state Sn
^

+1  from the state Sn
^

 was 
done from the equation 
 

s = ut + 0.5at2 

 
leading to the difference equation 

Sn
^

+1  = (1 - K)( Sn
^

+ Vn
^

Δt + 0.5 A n
^

Δt2) 

where Vn
^

 and A n
^

are estimates of the velocity and acceleration respectively. K is 
calculated from the equation 

K n
n

w
+ =

+
1 2

1ε

σ

( )  

 
K 

Prediction 
model 

+

 
K - 1 

Xn+1 Sn
^

+1  

Sn
^

Figure 3. Block diagram of a simple Kalman Filter 



where ε( )n +1 is the calculated mean square error between the original noise free 

signal, Sn and its estimate Sn
^

, while σ w
2 is the variance of the measured signal 

noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Divergence of the predicted and measured values. 
 
PROCEDURE: Two 50Hz video cameras were located with their optical axes 
approximately orthogonal to each other and a 3-D volume was calibrated using a 
Peak Performance calibration frame. A table was then placed in the calibration 
volume which was used to bounce golf balls off. The slave camera was connected 
to the master camera and set up to film with phase differences of 0°, 90°, 180° and 
270° with respect to the master camera. Using a GE Imager LCD10E video 
projector the image co-ordinates were generated by a Quora digitiser. The 3-D 
data was reconstructed using an 11 parameter Direct Linear Transform (Abdel-Aziz 
& Karara, 1971) and the residual error calculated from the pseudo-inverse data 
matrix. 
 
RESULTS: The calculated time between bounces for any two camera 
combinations was accurate to within 0.01 seconds. The phase of the cameras did 
not appear to have any effect. 
The residual error of the reconstructed showed an improvement of between 2% 
and 8%. 
 
DISCUSSION: As the time between impulses was consistently measured by all the 
cameras it would appear that the phase difference between any two asynchronous 
cameras can be calculated - provided they both record the same impulse. The 
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accuracy of this calculation is highly dependent, though, on the quality of the 
prediction model which is also required to estimate the best-fit location of the 
phase-shifted markers to enable 3-D reconstruction of the asynchronous markers. 
Although the residual error was reduced in all cases after filtering, a larger 
decrease was anticipated. Having calculated when and where the discontinuities 
occurred it should be possible to apply a low pass filter to the intermediate points. 
This approach is made difficult by the constraint of having to ensure that the new 
curves still intersect at the same points of discontinuity, whilst providing a best fit to 
the other points. 
 
CONCLUSIONS: This technique worked very well when identifying obvious points 
of discontinuity such as occurred with the bouncing ball. It remains to be seen how 
easy it will be to determine lesser discontinuities such as those that occur at foot 
strike. Using the information gained is surprisingly hard to utilise with the ability to 
measure the phase difference between cameras being limited by the quality of the 
prediction models operating on a distorted image.  
The small reduction in the residual error may be an indication that smoothing the 2-
D data prior to reconstruction is not effective, though there is the continued 
problem of determining the accuracy of data smoothed after reconstruction. 
Alternatively, the comparatively small reduction in residual error may be an 
indication of how large the systematic errors are. These errors will continue to 
dominate the quality of the reconstructed data until they can be effectively 
compensated for. 
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