
THE PERSONALISED 'DIGITAL ATHLETE': An evolving vision 
for the capture, modelling and simulation, of on-field athletic 

performance. 

Jacqueline Alderson & William Johnson 

School of Sport Science, Exercise & Health, 
University of Western Australia, Perth, Australia 

Technological advances in the areas of three-dimensional (3D) body scanning, 
in-vivo imaging and novel forms of motion capture and data analytics (e.g. deep 
learning neural networks) are rapidly bridging the lab versus field-based nexus 
that has historically plagued the applied sport biomechanist. Similarly, 
exponential advances in hardware and computer processing power has 
witnessed the emergence of the personalised 'digital athlete', an overarching 
vision that facilitates, via the integration of multiple technologies, real-time 
biomechanical data collection, modelling and reporting for immediate 
biofeedback. 
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INTRODUCTION: Globally, nearly twenty three billion dollars will be spent on wearable 
technologies in 2016 and it is estimated that by the year 2021 this market will increase to 
$1 71 billion (Reportlinkercom, 201 6). In the year 2020, 41 1 million wearable units will be sold 
in the US alone, with 70% of these being wrist-based devices such as smartwatches and 
fitness trackers (Paul Lamkin, 2016). Despite the marketing hype surrounding the potential 
scale of wearable devices transforming the sport science landscape. and the staggering 
amount of information that can be collected and stored using such devices, the one- 
dimensionality of the information provided is currently of limited downstream use to the sport 
biomechanist. These limitations aside, the rapid pace of technological improvement, 
particularly in the area of computational and neuro-musculoskeletaI modelling, has witnessed 
successful lab-based real-time data kinematic and kinetic data capture with immediate 
biofeedback for some time (Crowell et al., 2010; Mullineaux et al., 2012). In recent years, 
researchers have successfully extended the technology to include real-time estimations of 
joint contact and muscle forces (Pirzolato, Lloyd, Sartori 8 Reggiani, 2014). With continued 
advances in; passive and active imaging, multi-sensor integration, advanced historical data 
mining, scalable real-time processing architectures, and non-linear data science analytics 
techniques (e.g. deep learning), it is clear that the laboratory versus field nexus that has 
hampered the sport biomechanists' ability to collect, model and visualise on-field/in-game 
data in real-time, will soon be bridged. This paper outlines an approach currently being 
developed by a team of biomechanists and data scientists to achieve the personalised 'digital 
athlete' vision. 
METHODS: The personalised 'digital athlete' schema comprises two workbench phases that 
rely on advanced big data structure architectures. These architectures are capable of auto- 
classifying data and facilitate elegant, bidirectional data transfer, thereby enabling real-time 
biomechanical modelling and bio-feedback. 
Phase I :  Creatina structurallv databases and trainina sets 
A series of input modules, comprising both raw and processedlmodelled data, feed into a 
single traditional relational database management system (RDBMS) (Figure 1). These 
modules may be fully integrated horizontally (i.e. a single participant may have informed all 
modules) or partially integrated (i.e. a single participant informs a single, or a partial subset, 
of modules). 
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Figure 1: Independent data modules feeding a tradltlonal linear relational database management 
system (RDBMS). 

Within the complete personalised 'digital athlete' vision it is expected that the input data will 
extend beyond traditional kinematic and kinetic variables, with emerging technologies also 
playing a critical role in personalised component of the 'digital athlete' framework. As an 
example, we have developed a novel approach for estimating athlete-specific body segment 
inertial parameters (BSIPs), by integrating mass distribution gathered via a Dual X-Ray 
Absorptiometry (DM) scanner, with body volumelshape information collected using a raste- 
stereographic 30 surface scanner. Whilst previous attempts to derive BSlPs from DXA and 
3D scans assumed rigid body segments, our technique reprojected the DXA 2D mass data 
into the 3D scan while considering a deformable (non-rigid) transformation when aligning 
and registering the two scans. This approach resulted in more accurate BSlP estimation 
compared to traditional estimation techniques and was has now been adopted as standard 
with our lab data collction protocols (Rossi et al., 201 2; El-Sallam et al., 201 3). 

Figure 2: BSlP estimation workflow showing 3D scan merged with a DXA scan (Russi ef al., 201 2; El- 
Sgtiam et a1.,=13) 



While many research groups and centres may have large databases of concurrently 
collected coordinate 30 (c3d) motion files, GRF and EMG data, very few have the capacity 
or funding resources to fulfil the data input criteria for all modules (see Figure 1 for 
examples), and this is especially true for 
studies involving large sample sizes. 
Subsequently, advanced data science 
techniques can be employed to mine, 
prepare and structure all data (legacy and 
newly acquired) within a single database 
management system that maintains the - 
integrated relationship between datasets, 
Importantly, once a minimum number of 
samples are obtained within each module 
(->25,000), advanced non-linear data 

m 
science techniques can be used to estimate 
missing data (i. e. create a complete athlete Fig urn 3: e.g. motion capture trajectories 

profile across all modules when only partial 
data are available). 

Phase 2: Deep Leamins (Neural Network) Schema (DNN] 
This phase requires the appropriately prepared RDBMS (Phase f )  to provide the necessary 
inputs into a front-end training set required for use in a DNN schema. Figure 4 depicts a 
representative workbench for estimating one set of missing data - estimation of ground 
reaction forces and moments (GRFMs) using only motion capture trajectories as the input 
criteria. Although this is a case example of only one biomechanical variable's relationship to 
another, it is representative of the architecture of the entire 'digital athlete' workbench which 
effectively comprises multiple DNNs. Inputs required for the DNN training set are provided by 
the RDBMS. In this example these inputs are 1) motion capture trajectories from running, 
walking and sidestepping lab based trials, and their associated 2) GRFMs. The raw data are 
fed into the training set architecture and are required to pass through a series of decision 
gates and reformatting pipelines. The aligned datasets are then translated into lower 
dimensional space for importing into the multi-layer noklinear DNN. The created DNN can 
then be used to estimate GRFMs (output) from any motion capture trajectories provided 
(input). 



Figure 4: Schematic of a deep learning neural net training set and a real-time application example 
showing how it can be used to estimate unknown data. 
CONCLUSION: This paper outlines a developing philosophy that compiles legacy and newly 
acquired data in an advanced 'big data' architectures that facilitate the creation of a 
personalised 'digital athlete'. This personalised digital fingerprint will be driven by subject- 
specificity, yet will be founded on large and extensible population datasets by which missing 
individual data can be estimated. The wide adoption of this type of approach to data 
collection and analytics will require a big picture lens adoption by the sports biomechanics 
community. Away from the traditional repeated experimental designs of the past, to one 
involving large and constantly expanding data sets, non-linear computation and a 
collaborative team that involves data scientists and information and communications 
technology specialists. 
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